首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

2.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

3.
Fish populations are increasingly affected by multiple human and natural impacts including exploitation, eutrophication, habitat alteration and climate change. As a result many collapsed populations may have to recover in ecosystems whose structure and functioning differ from those in which they were formerly productive and supported sustainable fisheries. Here we investigate how a cod (Gadus morhua) population in the Baltic Sea whose biomass was reduced due to a combination of high exploitation and deteriorating environmental conditions might recover and develop in the 21st century in an ecosystem that likely will change due to both the already started recovery of a cod predator, the grey seal Halichoerus grypus, and projected climate impacts. Simulation modelling, assuming increased seal predation, fishing levels consistent with management plan targets and stable salinity, shows that the cod population could reach high levels well above the long-term average. Scenarios with similar seal and fishing levels but with 15% lower salinity suggest that the Baltic will still be able to support a cod population which can sustain a fishery, but biomass and yields will be lower. At present knowledge of cod and seal interactions, seal predation was found to have much lower impact on cod recovery, compared to the effects of exploitation and salinity. These results suggest that dual management objectives (recovery of both seal and cod populations) are realistic but success in achieving these goals will also depend on how climate change affects cod recruitment.  相似文献   

4.
Alternatives in ecosystem‐based management often differ with respect to trade‐offs between ecosystem values. Ecosystem or food‐web models and demographic models are typically employed to evaluate alternatives, but the approaches are rarely integrated to uncover conflicts between values. We applied multistate models to a capture–recapture dataset on common guillemots Uria aalge breeding in the Baltic Sea to identify factors influencing survival. The estimated relationships were employed together with Ecopath‐with‐Ecosim food‐web model simulations to project guillemot survival under six future scenarios incorporating climate change. The scenarios were based on management alternatives for eutrophication and cod fisheries, issues considered top priority for regional management, but without known direct effects on the guillemot population. Our demographic models identified prey quantity (abundance and biomass of sprat Sprattus sprattus) as the main factor influencing guillemot survival. Most scenarios resulted in projections of increased survival, in the near (2016–2040) and distant (2060–2085) future. However, in the scenario of reduced nutrient input and precautionary cod fishing, guillemot survival was projected to be lower in both future periods due to lower sprat stocks. Matrix population models suggested a substantial decline of the guillemot population in the near future, 24% per 10 years, and a smaller reduction, 1.1% per 10 years, in the distant future. To date, many stakeholders and Baltic Sea governments have supported reduced nutrient input and precautionary cod fishing and implementation is underway. Negative effects on nonfocal species have previously not been uncovered, but our results show that the scenario is likely to negatively impact the guillemot population. Linking model results allowed identifying trade‐offs associated with management alternatives. This information is critical to thorough evaluation by decision‐makers, but not easily obtained by food‐web models or demographic models in isolation. Appropriate datasets are often available, making it feasible to apply a linked approach for better‐informed decisions in ecosystem‐based management.  相似文献   

5.
Fisheries-induced evolution has become a major branch of the research on anthropogenic and contemporary evolution. Within the conservation context, fisheries-induced evolution has been hypothesized to negatively affect the persistence and recovery potential of depleted populations, but this has not been explicitly investigated. Here, we investigate how fisheries-induced evolution of Atlantic cod (Gadus morhua L.) life histories affects per capita population growth rate, a parameter negatively correlated with extinction risk. We simulate the evolutionary and ecological dynamics of a cod population for a 100 year period of size-selective harvesting, followed thereafter by 300 years of recovery. To evaluate the relative importance of harvest-induced evolution, we either allowed life histories to evolve during and after the fishing period, or we assumed that fisheries-induced evolution was absent. Population growth rates did not differ appreciably between the evolutionary and non-evolutionary simulation scenarios, despite the emergence of rather pronounced differences in life histories. The underlying reason was that in the absence of fishing the cumulative lifetime reproductive outputs were very similar among differing life histories. The results suggest that fisheries-induced evolution might not always have as clear-cut an effect on population growth rate as previously anticipated.  相似文献   

6.
Previous genetic studies using neutral markers such as allozymes, mtDNA and minisatellite loci have demonstrated varying amounts of population structure in cod Gadus morhua throughout the Atlantic. Microsatellite loci, which are potentially the most informative of presently available neutral genetic markers, have been applied extensively within western and eastern Atlantic areas but not on a range-wide basis. In the present study, six microsatellite DNA loci were used to screen cod samples from nine locations throughout the geographic range from the Scotian Shelf in the West Atlantic to the Barents and Baltic Seas in the east. Overall F ST value was 0·03 ( P = < 0·001) across all samples. Statistically significant population differences over all loci combined were evident between more geographically distant samples, using either heterogeneity tests or F ST analysis, with at least one locus showing significant differences between all samples (prior to Bonferroni correction). A significant correlation was observed between genetic and geographical distance, suggesting a higher level of historical and contemporary gene flow between adjacent populations than more distant populations. Samples from either end of the geographic range (Scotian Shelf and Baltic Sea) were particularly distinct when analysed using the STRUCTURE programme and also showed a high level of self-assignment when individuals of either the Scotian Shelf or Baltic Sea were tested against the entire data set. The present microsatellite study demonstrates a high level of geographic population structure between the western Atlantic, middle and eastern Atlantic and Baltic Sea, and thus, the findings should be useful in devising overall management and conservation strategies for the species.  相似文献   

7.
Baltic cod, like other species, is susceptible to inter‐annual fluctuations in sexual maturation, depending on the length, age, sex, extent of the habitat area, and stock abundance of the cod population. Maturity is one of the biological indicators used to detect changes in a stock that can be caused by fishing. To address these issues specifically for the eastern Baltic cod stock, long‐term data (1990–2006) from Polish research vessels in the southern Baltic were examined. To date, the ICES has used the same maturity ogives over extended periods and assumed invariant sex ratios for the assessment of eastern Baltic cod. The combined maturity ogives calculated in the present study were markedly lower, particularly for age groups 2–4 (5), in all periods, than those used in the ICES assessment. Moreover, the proportion of females increased with length and age, suggesting that annual verification of the sex ratio is needed. The present study also revealed that the total length (L50%) and the age (mean age‐at‐maturity; MAM50%) at which 50% achieved first sexual maturity were higher for females than for males in the study period. The long‐term mean L50% and MAM50% for females were 43.9 cm and 4.3 years, respectively, and for males 34.8 cm and 3.4 years. There was also a spatial difference between calculated maturity ogives, with slightly lower L50% (range: 1.4–8.6 cm) in the Gdańsk Basin than in the Bornholm Basin. The increasing trend in fishing mortality observed in 1993–2004 (ICES data) did not translate into a temporal trend in calculated maturity ogives. However, changes in L50% and MAM50% reflected recruitment variations (ICES data). The significance of these findings is discussed in the context of the environment and recruits abundance.  相似文献   

8.
Two cod stocks (western Baltic cod, WBC, and eastern Baltic cod, EBC) are managed in the Baltic Sea which is characterized by different main spawning areas and different main spawning periods. In this study we analyse the spatial and temporal occurrence of spawning individuals of both cod stocks in the main spawning grounds of the Baltic Sea based on eight microsatellite loci. Our results suggest that EBC (Gadus morhua callarias) has formed currently temporally stable, substantially homogeneous population not only in the Bornholm Sea (ICES SD: 25) but also in the Arkona Sea (ICES SD: 24). The presented analyses proved that EBC (G. m. callarias) can temporarily also spawn in the Belt Sea.  相似文献   

9.
The study of hybrid zones is central to our understanding of the genetic basis of reproductive isolation and speciation, yet very little is known about the extent and significance of hybrid zones in marine fishes. We examined the population structure of cod in the transition area between the North Sea and the Baltic Sea employing nine microsatellite loci. Genetic differentiation between the North Sea sample and the rest increased along a transect to the Baltic proper, with a large increase in level of differentiation occurring in the Western Baltic area. Our objective was to determine whether this pattern was caused purely by varying degrees of mechanical mixing of North Sea and Baltic Sea cod or by interbreeding and formation of a hybrid swarm. Simulation studies revealed that traditional Hardy-Weinberg analysis did not have sufficient power for detection of a Wahlund effect. However, using a model-based clustering method for individual admixture analysis, we were able to demonstrate the existence of intermediate genotypes in all samples from the transition area. Accordingly, our data were explained best by a model of a hybrid swarm flanked by pure nonadmixed populations in the North Sea and the Baltic Sea proper. Significant correlation of gene identities across loci (gametic phase disequilibrium) was found only in a sample from the Western Baltic, suggesting this area as the centre of the apparent hybrid zone. A hybrid zone for cod in the ecotone between the high-saline North Sea and the low-saline Baltic Sea is discussed in relation to its possible origin and maintenance, and in relation to a classical study of haemoglobin variation in cod from the Baltic Sea/Danish Belt Sea, suggesting mixing of two divergent populations without interbreeding.  相似文献   

10.
The interannual and ontogenetic dynamics of the fecundity of the Baltic cod Gadus morhua callarias and the dependence of the number of the offspring on the reproduction conditions were studied. The absolute individual fecundity and the relative individual fecundity had no pronounced interannual dynamics for the period of 1994?2013. The maximal population fecundity was observed in early 1980, the minimal, in 1990?2000. Nearly every year, the highest contribution to the population fecundity belongs to the 4?5-year old females. The ranking of the survival rates and the year-class strength for the females at the age of 2 years showed that the emergence of the generations of high and average productivity (1980?1986) referred to the unfavorable and moderate survival conditions during the early ontogenesis. During the period of small stock (after 1987), the conditions were mostly favorable and moderate. It is suggested that the significant role in the offspring dynamics belongs to the factors linked to the population density. After 2005, favorable survival conditions promoted the increase of the Baltic cod abundance; this increase was also supported by the decrease of the commercial fishing and by the sporadic large-scale advective processes.  相似文献   

11.
Marine fish populations of the global oceans and particularly large-bodied, continental shelf-dwelling groundfish species of the North Atlantic, such as cod (Gadus morhua), have been strongly perturbed by over-fishing, frequently beyond levels that may have altered their capacity to recover. Age and size structure, spatial structure, reproductive potential, and other traits that convey fitness advantages are commonly lost when prolonged and excessive fishing pressure is exerted. Fisheries management protocols implemented to recover collapsed populations have been numerous and varied with all attempting to reduce or eliminate fishing pressure. Such measures, employed singly or in multiple combinations, typically involve quota reductions or fishing moratoria, area closures and other technical measures, as well as enhanced enforcement of fishing practices. A striking geographic pattern exists in the efficacy of such measures to regain lost population attributes and hence recovery. Some regional populations have recovered while others, despite management interventions lasting decades, notably, but not exclusively, those aimed at cod populations of the Northwest Atlantic, have yet to fully recover, an endpoint analogous to the conclusion of the famous nursery rhyme of Humpty Dumpty. Here we examine the dynamics of multiple collapsed populations exhibiting varying responses to recovery initiatives from the perspective of the Humpty Dumpty metaphor.  相似文献   

12.
In 2014, the International Council for the Exploration of the Sea (ICES) was unexpectedly unable to provide an analytical assessment of eastern Baltic cod stock; factors such as data issues, assessment methodology, and the ecological situation of cod were indicated as the reasons for this failure. Some evidence suggests that the natural mortality (M) of cod could increase substantially in forthcoming years and that the selectivity could change. In this paper, age‐structured and stock‐production assessment models were applied to simulate the dynamics of cod stock; in the models, both constant and increasing natural mortalities were permitted. In the age‐structured model, the effects of selectivity related to the cod size on the cod assessment were also analysed. In addition, stock with characteristics similar to Baltic cod stock and increasing natural mortality was generated and assessed with the age‐structured model using both constant and increasing M. It was shown that models with increasing natural mortality of cod in recent years perform much better than models with constant natural mortality in terms of the distribution of residuals and retrospective patterns. The models with size‐dependent selectivity did not perform better than other standard assessments. The assessment of generated stock (where natural mortality was increasing) with constant natural mortality in the assessment model showed a poor distribution of residuals and strong retrospective patterns, similar to the ICES assessment with constant M. The conducted simulations strongly suggest that the main reason for the poor recent cod assessment is the increase in natural mortality, which is not considered in the assessment methodology.  相似文献   

13.
Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how exploitation would have to be adjusted in order to achieve sustainable management under different climate scenarios.  相似文献   

14.
In the distributional overlap volume of Baltic cod Gadus morhua and its prey, studied in the Bornholm Basin in the southern Baltic Sea, only a fraction of the sprat Sprattus sprattus population vertically overlapped with the Baltic cod population. Sprat occurred in the intermediate water, in the halocline and in the bottom water, while herring Clupea harengus and Baltic cod occurred exclusively in the halocline and in the bottom water. Only parts of the sprat population were hence accessible for Baltic cod, and only a fraction of the sprat had access to the Baltic cod eggs below the halocline. Baltic cod–clupeid overlap volumes appeared to be determined by salinity stratification and oxygenation of the bottom water. Hydrography time series were used to estimate average habitat volumes and overlap from July to September in 1958–1999. In the 1999 survey spawning Baltic cod had greater ratios of empty stomachs and lower average rations than non-spawning Baltic cod. The average ration for Baltic cod caught within 11· 4 m from the bottom (demersal) did not differ from the average ration of Baltic cod caught in shallower waters (pelagic), because spawning and non-spawning Baltic cod in both strata were caught at equal rates. The diet of the Baltic cod caught demersally contained more benthic invertebrates, especially Saduria entomon, but Baltic cod caught pelagically also had fresh benthic food in their stomachs, indicating vertical migration of individual fish.  相似文献   

15.
Although recent historical ecology studies have extended quantitative knowledge of eastern Baltic cod (Gadus morhua) exploitation back as far as the 16th century, the historical origin of the modern fishery remains obscure. Widespread archaeological evidence for cod consumption around the eastern Baltic littoral emerges around the 13th century, three centuries before systematic documentation, but it is not clear whether this represents (1) development of a substantial eastern Baltic cod fishery, or (2) large-scale importation of preserved cod from elsewhere. To distinguish between these hypotheses we use stable carbon and nitrogen isotope analysis to determine likely catch regions of 74 cod vertebrae and cleithra from 19 Baltic archaeological sites dated from the 8th to the 16th centuries. δ13C and δ15N signatures for six possible catch regions were established using a larger sample of archaeological cod cranial bones (n = 249). The data strongly support the second hypothesis, revealing widespread importation of cod during the 13th to 14th centuries, most of it probably from Arctic Norway. By the 15th century, however, eastern Baltic cod dominate within our sample, indicating the development of a substantial late medieval fishery. Potential human impact on cod stocks in the eastern Baltic must thus be taken into account for at least the last 600 years.  相似文献   

16.
Selectivity of fishing gears used in the Baltic Sea cod fishery   总被引:1,自引:0,他引:1  
The Baltic cod (Gadus morhua) plays a very significant role in the Baltic Sea ecosystem being the major fish top predator and the most important commercial species for the Baltic Sea fishing industry. Consequently the management and understanding of the exploitation pattern of the stock is of major importance. Technical regulations, improving the selectivity of cod, have been a major management strategy and the Baltic Sea is likely to be the area where most fishing gear selectivity studies, focussing on size selectivity, have been conducted over time. The methodology for conducting and analysing selectivity data has been significantly improved in recent years. The subject is reviewed since the choice of methodology can have a significant effect on the interpretation of the outcome of selectivity experiments. Factors affecting the selectivity of trawl and gill nets are considered. Alternative ways to improve the size and species selectivity of trawls using selective devices are reviewed. Selectivity parameters from available literature are listed and the correlations of selectivity parameters to the mesh size for different gears are estimated. The historical legislation on selectivity is reviewed and the expected selectivity for trawls is estimated. Management considerations concerning the mortality of escaping and discarded fish and wider management impacts have to be considered if improving selectivity. The review is ended by conclusions including reflections on needed research in the future.  相似文献   

17.
Artisanal coastal invertebrate fisheries in Galicia are socio-economically important and ecologically relevant. Their management, however, has been based on models of fish population dynamics appropriate for highly mobile demersal or pelagic resources and for industrial fisheries. These management systems focus on regulating fishing effort, but in coastal ecosystems activities that change or destruct key habitats may have a greater effect on population abundance than does fishing mortality. The Golfo Artabro was analysed as a representative example of a coastal ecosystem in Galicia, and the spider crab Maja squinado used as a model of an exploited coastal invertebrate, for which shallow coastal areas are key habitats for juvenile stages. The commercial legal gillnet fishery for the spider crab harvests adults during their reproductive migrations to deep waters and in their wintering habitats. Illegal fisheries operate in shallow waters. The annual rate of exploitation is >90%, and <10% of the primiparous females reproduce effectively at least once. A simple spatially-explicit cohort model was constructed to simulate the population dynamics of spider crab females. Yield- and egg-per-recruit analyses corresponding to different exploitation regimes were performed to compare management policies directed to control the fishing effort or to protect key habitats. It was found that the protection of juvenile habitats could allow increases in yield and reproductive effort higher than in the present system, with such protection based in the control of the fishing effort of the legal fishery. Additionally, there is an urgent need for alternative research and management strategies in artisanal coastal fisheries based on the implementation of a system of territorial use rights for fishers, the integration of the fishers into assessment and management processes, and the protection of key habitats (marine reserves) as a basic tool for the regulation of the fisheries.  相似文献   

18.
The multispecies stock‐production model of Horbowy developed in 1996 was further extended to include the unexploited part of a stock. The model was then applied to simulate stock dynamics and species interactions of cod, herring, and sprat in the Baltic from 1982 to 2001. The model indicates that there have been large declines in cod and herring biomass over the past two decades and a strong increase in sprat biomass in the 1990s. Using the extended stock‐production model, the relative changes in stock biomass were similar to the changes derived using the age‐structured multispecies model, the multispecies virtual population analysis (MSVPA). However, the production model estimates of the average predation mortality of young cod and young sprat are much lower than those derived from MSVPA, although the estimates for young and adult herring and adult sprat are similar in both approaches. The estimates of food suitability show that the preferred food of adult cod is adult sprat and young herring, while the suitability of young sprat, young cod, and adult herring is much smaller. The simulations performed show that the multispecies production model, which is less data‐demanding than age‐structured MSVPA, can provide estimates of stock dynamics and species interactions that are largely consistent with those estimated by MSVPA. The quality of input data in terms of recruitment and fishing‐effort indices strongly impacts the reliability of the model's results.  相似文献   

19.
Population-specific assessment and management of anadromous fish at sea requires detailed information about the distribution at sea over ontogeny for each population. However, despite a long history of mixed-stock sea fisheries on Atlantic salmon, Salmo salar, migration studies showing that some salmon populations feed in different regions of the Baltic Sea and variation in dynamics occurs among populations feeding in the Baltic Sea, such information is often lacking. Also, current assessment of Baltic salmon assumes equal distribution at sea and therefore equal responses to changes in off-shore sea fisheries. Here, we test for differences in distribution at sea among and within ten Atlantic salmon Salmo salar populations originating from ten river-specific hatcheries along the Swedish Baltic Sea coast, using individual data from >125,000 tagged salmon, recaptured over five decades. We show strong population and size-specific differences in distribution at sea, varying between year classes and between individuals within year classes. This suggests that Atlantic salmon in the Baltic Sea experience great variation in environmental conditions and exploitation rates over ontogeny depending on origin and that current assessment assumptions about equal exploitation rates in the offshore fisheries and a shared environment at sea are not valid. Thus, our results provide additional arguments and necessary information for implementing population-specific management of salmon, also when targeting life stages at sea.  相似文献   

20.
Karaseva EM 《Ontogenez》2011,42(3):200-204
Proceeding from long-term data on the numbers of eggs of cod in ichthyoplankton, the total annual production of cod eggs at four main spawning grounds of the Baltic Sea was calculated. It was shown that the long-term fluctuations of cod egg production were positively related to the dynamics of the volume of waters coming to the Baltic Sea in years of the North Sea advections. It is suggested that this dependence was determined by a set of adaptations providing the extension of cod reproduction upon the improvement of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号