首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Japanese quail (Coturnix japonica) is a notably valuable egg and meat producer but has also been used as a laboratory animal. In the present study, we constructed a Japanese quail linkage map with 1735 polymorphic amplified fragment length polymorphisms markers, and nine chicken microsatellite (MS) markers, as well as sex and phenotypes of two genetic diseases; a muscular disorder (LWC) and neurofilament-deficient mutant (Quv). Linkage analysis revealed 578 independent loci. The resulting linkage map contained 44 multipoint linkage groups covering 2597.8 cM and an additional 218.2 cM was contained in 21 two-point linkage groups. The total map was 2816 cM in length with an average marker interval of 5.5 cM. The Quv locus was located on linkage group 5, but linkage was not found between the LWC locus and any of the markers. Comparative mapping with chicken using orthologous markers revealed chromosomal assignments of the quail linkage group 1 to chicken chromosome 2 (GGA2), 5 to GGA22, 2 to GGA5, 8 to GGA7, 27 to GGA11, 29 to GGA1 and 45 to GGA4.  相似文献   

2.
A linkage map of the Japanese quail (Coturnix japonica) genome was constructed based upon segregation analysis of 72 microsatellite loci in 433 F(2) progeny of 10 half-sib families obtained from a cross between two quail lines of different genetic origins. One line was selected for long duration of tonic immobility, a behavioural trait related to fearfulness, while the other was selected based on early egg production. Fifty-eight of the markers were resolved into 12 autosomal linkage groups and a Z chromosome-specific linkage group, while the remaining 14 markers were unlinked. The linkage groups range from 8 cM (two markers) to 206 cM (16 markers) and cover a total map distance of 576 cM with an average spacing of 10 cM between loci. Through comparative mapping with chicken (Gallus gallus) using orthologous markers, we were able to assign linkage groups CJA01, CJA02, CJA05, CJA06, CJA14 and CJA27 to chromosomes. This map, which is the first in quail based solely on microsatellites, is a major step towards the development of a quality molecular genetic map for this valuable species. It will provide an important framework for further genetic mapping and the identification of quantitative trait loci controlling egg production and fear-related behavioural traits in quail.  相似文献   

3.
In line with the Gifu University''s initiative to map the Japanese quail genome, a total of 100 Japanese quail microsatellite markers isolated in our laboratory were evaluated in a population of 20 unrelated quails randomly sampled from a colony of wild quail origin. Ninety-eight markers were polymorphic with an average of 3.7 alleles per locus and a mean heterozygosity of 0.423. To determine the utility of these markers for comparative genome mapping in Phasianidae, cross-species amplification of all the markers was tested with chicken and guinea fowl DNA. Amplification products similar in size to the orthologous loci in quail were observed in 42 loci in chicken and 20 loci in guinea fowl. Of the cross-reactive markers, 57.1% in chicken and 55.0% in guinea fowl were polymorphic when tested in 20 birds from their respective populations. Five of 15 markers that could cross-amplify Japanese quail, chicken, and guinea fowl DNA were polymorphic in all three species. Amplification of orthologous loci was confirmed by sequencing 10 loci each from chicken and guinea fowl and comparing with them the corresponding quail sequence. The microsatellite markers reported would serve as a useful resource base for genetic mapping in quail and comparative mapping in Phasianidae.  相似文献   

4.
The quail is a valuable farm and laboratory animal. Yet molecular information about this species remains scarce. We present here the first genetic linkage map of the Japanese quail. This comprehensive map is based solely on amplified fragment length polymorphism (AFLP) markers. These markers were developed and genotyped in an F2 progeny from a cross between two lines of quail differing in stress reactivity. A total of 432 polymorphic AFLP markers were detected with 24 TaqI/EcoRI primer combinations. On average, 18 markers were produced per primer combination. Two hundred and fifty eight of the polymorphic markers were assigned to 39 autosomal linkage groups plus the ZW sex chromosome linkage groups. The linkage groups range from 2 to 28 markers and from 0.0 to 195.5 cM. The AFLP map covers a total length of 1516 cM, with an average genetic distance between two consecutive markers of 7.6 cM. This AFLP map can be enriched with other marker types, especially mapped chicken genes that will enable to link the maps of both species and make use of the powerful comparative mapping approach. This AFLP map of the Japanese quail already provides an efficient tool for quantitative trait loci (QTL) mapping.  相似文献   

5.
Chicken microsatellite primers are not efficient markers for Japanese quail   总被引:5,自引:0,他引:5  
Domestic fowl or chicken (Gallus gallus) and Japanese quail (Coturnix japonica) belong to the family Phasianidae. The exchange of marker information between chicken and quail is an important step towards the construction of a high-resolution comparative genetic map in Phasianidae, which includes several poultry species of agricultural importance. We tested chicken microsatellite markers to see if they would be suitable as genetic linkage markers in Japanese quail. Twenty-six per cent (31/120) of chicken primers amplified individual loci in Japanese quail and 65% (20/31) of the amplified loci were found to be polymorphic. Eleven of the polymorphic loci were excluded as uninformative because of the lack of amplification in some individuals or high frequency of nonspecific amplification. The sequence information of the remaining nine loci revealed six of them to contain microsatellites that were nearly identical with those of the orthologous regions in chicken. For these six loci, allele frequencies were estimated in 50 unrelated quails. Although the very few chicken markers that do work well in quail could be used as anchor points for a comparative mapping, most chicken markers are not useful for studies in quail. Therefore, more effort should be committed to developing quail-specific markers rather than attempting to adapt chicken markers for work in quail.  相似文献   

6.
A large F2 cross with 920 Japanese quail was used to map QTL for phosphorus utilization, calcium utilization, feed per gain and body weight gain. In addition, four bone ash traits were included, because it is known that they are genetically correlated with the focal trait of phosphorus utilization. Trait recording was done at the juvenile stage of the birds. The individuals were genotyped genome‐wide for about 4k SNPs and a linkage map constructed, which agreed well with the reference genome. QTL linkage mapping was performed using multimarker regression analysis in a line cross model. Single marker association mapping was done within the mapped QTL regions. The results revealed several genome‐wide significant QTL. For the focal trait phosphorus utilization, a QTL on chromosome CJA3 could be detected by linkage mapping, which was substantiated by the results of the SNP association mapping. Four candidate genes were identified for this QTL, which should be investigated in future functional studies. Some overlap of QTL regions for different traits was detected, which is in agreement with the corresponding genetic correlations. It seems that all traits investigated are polygenic in nature with some significant QTL and probably many other small‐effect QTL that were not detectable in this study.  相似文献   

7.
The objective of this work was to map classical markers (plumage colours and blood proteins) on the microsatellite linkage map of the Japanese quail (Coturnix japonica). The segregation data on two plumage colours and three blood proteins were obtained from 25 three-generation families (193 F2 birds). Linkage analysis was carried out for these five classical markers and 80 microsatellite markers. A total of 15 linkage groups that included the five classical loci and 69 of the 80 microsatellite markers were constructed. Using the BLAST homology search against the chicken genome sequence, three quail linkage groups, QL8, QL10 and QL13, were suggested to be homologous to chicken chromosomes GGA9, GGA20 and GGA24, respectively. Two plumage colour loci, black at hatch (Bh) and yellow (Y), and the three blood protein loci, transferrin (Tf), haemoglobin (Hb-1) and prealbumin-1 (Pa-1), were assigned to CJA01, QL10, QL8, CJA14 and QL13, respectively.  相似文献   

8.
A detailed linkage map is necessary for efficient detection of quantitative trait loci (QTL) in chicken resource populations. In this study, microsatellite markers isolated from a (CA)n-enriched library (designated as ABR Markers) were mapped using a population developed from a cross between Japanese Game and White Leghorn chickens. In total, 296 markers including 193 ABR, 43 MCW, 31 ADL, 22 LEI, 3 HUJ, 2 GCT, 1 UMA and 1 ROS were mapped by linkage to chicken chromosomes 1-14, 17-21, 23, 24, 26-28 and Z. In addition, five markers were assigned to the map based on the chicken draft genomic sequence, bringing the total number of markers on the map to 301. The resulting linkage map will contribute to QTL mapping in chicken.  相似文献   

9.
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals.  相似文献   

10.
To increase the number of type I loci on the chicken linkage map, chicken genes containing microsatellite sequences (TAn, CAn, GAn, An) were selected from the nucleotide sequence database and primers were developed to amplify the repeats. Initially, 40 different microsatellites located within genes were tested on a panel of animals from diverse breeds, and identified 17 polymorphic microsatellites. These polymorphisms allowed us to add 15 new genes to the chicken linkage map. In addition, two genes were added to the chicken map by fluorescent in situ hybridization. As the map position of the human homologues of 13 of these genes is known, these markers extend the comparative map between chicken and man. Our results confirm and refine conserved regions between chicken and man on chicken chromosomes 2 and 7 and on linkage group E29C09W09. Furthermore, an additional conserved region is identified on chromosome 7.  相似文献   

11.
A large amount of genetic mapping information has been obtained in the chicken from the East Lansing, Compton and Wageningen reference populations. Physical mapping information has however, been more limited. We have mapped 14 new clones, both genetically and physically, and all 14 have been assigned to macrochromosomes. The orientation of linkage groups E01C01C11W01 (Chr 1), E06C02W02 (Chr 2), E02C03W03 (Chr 3), E05C04W04 (Chr 4), E07E34C05W05 (Chr 5), E11C10W06 (Chr 6), E45C07W07 (Chr 7) and E43C12W11 (Chr 8) has been established. Here we present integrated maps of the eight macrochromosomes and the Z chromosome of the chicken and correlate genetic with physical distances for chromosomes 1-3 and the Z sex chromosome.  相似文献   

12.
Comparative mapping of chicken and human genomes is described, primarily of regions corresponding to human chromosomes 1, 4 and 9. Segments of chicken orthologues of selected human genes were amplified from parental DNA of the East Lansing backcross reference mapping population, and the two parental alleles were sequenced. In about 80% of the genes tested, sequence polymorphism was identified between reference population parental DNAs. The polymorphism was used to design allele-specific primers with which to genotype the backcross panel and place genes on the chicken linkage map. Thirty-seven genes were mapped which confirmed the surprisingly high level of conserved synteny between orthologous chicken and human genes. In several cases the order of genes in conserved syntenic groups differs between the two genomes, suggesting that there may have been more frequent intrachromosomal inversions as compared with interchromosomal translocations during the separate evolution of avian and mammalian genomes.  相似文献   

13.
Japanese quail microsatellite loci amplified with chicken-specific primers   总被引:9,自引:0,他引:9  
Forty-eight primer pairs for chicken (Gallus gallus) microsatellite loci were tested in polymerase chain reaction (PCR) amplification of Japanese quail (Coturnix japonica) genomic DNA. Amplification products were obtained from 28 primer-pairs (58.3%) after optimizing the PCR conditions. Eleven (22.9%) of these generated specific products and 17 yielded non-specific amplification products. Eight markers (ADL0037, ADL0038, ADL0142, ADL0143, ADL0206, ADL0315, ADL0366, and HUJ0006) were polymorphic and three were monomorphic (ADL0023, ADL0024, and ADL0257) in four Japanese quail populations. Specific amplification products from each of the 11 PCR primers were sequenced. Seven of the eight polymorphic and one of three monomorphic markers contained simple tandem repeats. Six of these microsatellite loci (ADL0037, ADL0315, ADL0142, ADL0143, ADL0366 and ADL0257) may be homologous to the corresponding chicken loci from which the markers were developed.  相似文献   

14.
A chicken embryonic cDNA library was screened with a (TG)13 probe in order to develop polymorphic microsatellite markers. The redundancy of the embryonic cDNA library with a chicken brain cDNA library, which was used for microsatellite development in a previous study, was extremely high. Of the 300 (TG)13 positive clones, only 80 were unique for the embryonic cDNA library. Still, nine expressed sequences derived from the embryonic cDNA library were mapped in the Wageningen (WAU) resource population. In addition seven microsatellite markers from the chicken brain cDNA library, which were monomorphic or unlinked in the two international reference families in the previous study, were also mapped in the WAU population. Three of the 16 mapped chicken expressed sequence tags (ESTs) showed relatively high percentages of sequence similarity to sequences found in other species. As two of these genes, RAB6 and ZFX/ZFY, have been mapped in humans, they contribute to the comparative map of the chicken.  相似文献   

15.
T Shibata  T Abe 《Animal genetics》1996,27(3):195-197
Vitamin D binding protein ( GC ) and serum protease inhibitor ( PI ) have been added to genetic markers in the Japanese quail. Both loci were controlled by autosomal codominant alleles named GCA, GCB and PIA, PIB, PIC, respectively. Close linkage between the loci for serum albumin ( ALB ) and GC protein is reported. Two recombinants were observed in 145 informative offspring of 14 families. The recombination frequency between the loci was estimated as 0.014±0.006. Thus, GC was assigned to linkage group II in the Japanese quail. No signs of linkage were observed among the loci for the ALB-GC complex, PI. serum prealbumin 2 ( PA2 ), phosphoglucose isomerase ( PG1 ), 6-phosphogluconate dehydrogenase ( PGD ) and esterase-D ( ESD ).  相似文献   

16.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

17.
A comparative map was made of chicken chromosome 13 (GGA13) with a part of human chromosome 5 (HSA5). Microsatellite markers specific for GGA13 were used to screen the Wageningen chicken bacterial artificial chromosome (BAC) library. Selected BAC clones were end sequenced and 57 sequence tag site (STS) markers were designed for contig building. In total, 204 BAC clones were identified which resulted in a coverage of about 20% of GGA13. Identification of genes was performed by a bi-directional approach. The first approach starting with sequencing mapped chicken BAC subclones, where sequences were used to identify orthologous genes in human and mouse by a basic local alignment search tool (BLAST) database search. The second approach started with the identification of chicken orthologues of human genes in the HSA5q23-35 region. The chicken orthologous genes were subsequently mapped by fluorescent in situ hybridisation (FISH) and/or single neucleotide polymorphism typing. The total number of genes mapped on GGA13 is increased from 14 to a total of 20 genes. Genes mapped on GGA13 have their orthologues on HSA5q23-5q35 in human and on Mmu11, Mmu13 and Mmu18 in mouse.  相似文献   

18.
Summary A Golgi study of the suprachiasmatic nucleus (SCN) of the chicken and Japanese quail revealed in this area a complex neuronal pattern and typology, including specialized dendritic patterns. Immunocytochemical studies provided evidence for the existence of a vasotocinergic system within the SCN, mainly in its rostral portion. Other clusters of immunoreactive elements are located in the lateral and dorsal divisions of this nucleus; they show a different distribution in the chicken and Japanese quail. The present results confirm, in birds, the existence of a morphologically defined SCN, the complex cytoarchitecture of which suggests specialized functions.This study was supported by grants from CNR (83.00447.04, 84.01769.04 and 84.00797.04) and MPI (60%)  相似文献   

19.
Phosphoglucose isomerase electrophoretic patterns of the Japanese quail were found to be controlled by three alleles at an autosomal locus. In the laboratory quail population, the frequency of the alleles PGIF, PGIS1 and PGIS2 was 0.175, 0.465 and 0.360, respectively.  相似文献   

20.
Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V.O2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V.O2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V.O2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V.O2 at higher Ta (36 °C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V.O2. No relationship was found between the magnitudes of decreases in Tb and V.O2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V.O2 was unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号