首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several biological subclones of a biological clone of foot-and-mouth disease virus (FMDV) have been subjected to many plaque-to-plaque (serial bottleneck) transfers in cell culture. At transfer 190 to 409, clones underwent a transition towards a non-cytolytic (NC) phenotype in which the virus was unable to produce plaques, representing at least a 140-fold reduction in specific infectivity relative to the parental biological clone. NC clones, however, were competent in RNA replication and established a persistent infection in cell culture without an intervening cytolytic phase. In one clone, the transition to the NC phenotype was associated with the elongation of an internal oligodenylate tract that precedes the second functional AUG translation initiation codon. The pattern of mutations and their distribution along the FMDV genome of the clones subjected to serial bottleneck transfers were compared with the pattern of mutations in FMDV clones subjected to large population passages. Both the corrected ratios of non-synonymous to synonymous mutations and some specific mutations in coding and non-coding regions suggest participation of positive selection during large population passages and not during bottleneck transfers. Some mutations in the clones that attained the NC phenotype were located in genomic regions affecting the capacity of FMDV to kill BHK-21 cells. The resistance to extinction of clones subjected to plaque-to-plaque transfers marks a striking contrast with regard to the ease of extinction mediated by lethal mutagenesis. The results document a major phenotypic transition of a virus as a result of serial bottleneck events.  相似文献   

2.
Viral quasispecies may contain a subset of minority genomes that reflect those genomic sequences that were dominant at an early phase of quasispecies evolution. Such minority genomes are referred to as memory in viral quasispecies. A memory marker previously characterized in foot-and-mouth disease virus (FMDV) is an internal oligoadenylate tract of variable length that became dominant upon serial plaque-to-plaque transfers of FMDV clones. During large population passages, genomes with internal oligoadenylate were outcompeted by wild-type revertants but remained in the mutant spectra as memory genomes. Here, we report a quantification of relative fitness of several FMDV clones, harboring internal oligoadenylate tracts of different length, and that were retrieved at early or late times (passage number) after implementation of memory. The results show that for any given length range of the oligoadenylate, maintenance in memory resulted in an increase in relative fitness, comparable to the increase undergone by the entire population. The fitness increase is in agreement with the Red Queen hypothesis, and implies a replicative memory mechanism. Thus, permanence of memory genomes may be a source of high fitness variants despite their initial low fitness, and despite having remained hidden in mutant spectra. This reinforces the interest of diagnosing minority genomes during chronic human and animal viral infections.  相似文献   

3.
Muller's ratchet predicts fitness losses in small populations of asexual organisms because of the irreversible accumulation of deleterious mutations and genetic drift. This effect should be enhanced if population bottlenecks intervene and fixation of mutations is not compensated by recombination. To study whether Muller's ratchet could operate in a retrovirus, 10 biological clones were derived from a human immunodeficiency virus type 1 (HIV-1) field isolate by MT-4 plaque assay. Each clone was subjected to 15 plaque-to-plaque passages. Surprisingly, genetic deterioration of viral clones was very drastic, and only 4 of the 10 initial clones were able to produce viable progeny after the serial plaque transfers. Two of the initial clones stopped forming plaques at passage 7, two others stopped at passage 13, and only four of the remaining six clones yielded infectious virus. Of these four, three displayed important fitness losses. Thus, despite virions carrying two copies of genomic RNA and the system displaying frequent recombination, HIV-1 manifested a drastic fitness loss as a result of an accentuation of Muller's ratchet effect.  相似文献   

4.
Evolution of fitness values upon replication of viral populations is strongly influenced by the size of the virus population that participates in the infections. While large population passages often result in fitness gains, repeated plaque-to-plaque transfers result in average fitness losses. Here we develop a numerical model that describes fitness evolution of viral clones subjected to serial bottleneck events. The model predicts a biphasic evolution of fitness values in that a period of exponential decrease is followed by a stationary state in which fitness values display large fluctuations around an average constant value. This biphasic evolution is in agreement with experimental results of serial plaque-to-plaque transfers carried out with foot-and-mouth disease virus (FMDV) in cell culture. The existence of a stationary phase of fitness values has been further documented by serial plaque-to-plaque transfers of FMDV clones that had reached very low relative fitness values. The statistical properties of the stationary state depend on several parameters of the model, such as the probability of advantageous versus deleterious mutations, initial fitness, and the number of replication rounds. In particular, the size of the bottleneck is critical for determining the trend of fitness evolution.  相似文献   

5.
The effect of combinations of the mutagenic base analog 5-fluorouracil (FU) and the antiviral inhibitors guanidine hydrochloride (G) and heparin (H) on the infectivity of foot-and-mouth disease virus (FMDV) in cell culture has been investigated. Related FMDV clones differing up to 10(6)-fold in relative fitness in BHK-21 cells have been compared. Systematic extinction of intermediate fitness virus was attained with a combination of FU and G but not with the mutagen or the inhibitor alone. Systematic extinction of high-fitness FMDV required the combination of FU, G, and H. FMDV showing high relative fitness in BHK-21 cells but decreased replicative ability in CHO cells behaved as a low-fitness virus with regard to extinction mutagenesis in CHO cells. This confirms that relative fitness, rather than a specific genomic sequence, determines the FMDV response to enhanced mutagenesis. Mutant spectrum analysis of several genomic regions from a preextinction population showed a statistically significant increase in the number of mutations compared with virus passaged in parallel in the absence of FU and inhibitors. Also, in a preextinction population the types of mutations that can be attributed to the mutagenic action of FU were significantly more frequent than other mutation types. The results suggest that combinations of mutagenic agents and antiviral inhibitors can effectively drive high-fitness virus into extinction.  相似文献   

6.
Passage of foot-and-mouth disease virus (FMDV) in cell culture in the presence of the mutagenic base analog 5-fluorouracil or 5-azacytidine resulted in decreases of infectivity and occasional extinction of the virus. Low viral loads and low viral fitness enhanced the frequency of extinction events; this finding was shown with a number of closely related FMDV clones and populations differing by up to 10(6)-fold in relative fitness in infections involving either single or multiple passages in the absence or presence of the chemical mutagens. The mutagenic treatments resulted in increases of 2- to 6.4-fold in mutation frequency and up to 3-fold in mutant spectrum complexity. The largest increase observed corresponded to the 3D (polymerase)-coding region, which is highly conserved in nonmutagenized FMDV populations. As a result, nucleotide sequence heterogeneity for the 3D-coding region became very similar to that for the variable VP1-coding region in FMDVs multiply passaged in the presence of chemical mutagens. The results suggest that strategies to combine reductions of viral load and viral fitness could be effectively associated with extinction mutagenesis as a potential new antiviral strategy.  相似文献   

7.
Rapid evolution of foot-and-mouth disease virus (FMDV) is documented during persistent infections of cattle. The carrier state was established experimentally with plaque-purified FMDV of serotype C3. Virus was recovered from the esophageal pharyngeal area of the animals up to 539 days postinfection. Analysis of capsid proteins by electrofocusing and by electrophoretic mobility of the genomic poly(C)-rich tract suggested heterogeneity in several isolates and sequential dominance of viral subpopulations. Nucleotide sequences of the VP1-coding region of the parental FMDV C3 clones and of seven isolates from the carrier cattle showed point mutations that represented rates of fixation of mutations of 0.9 X 10(-2) to 7.4 X 10(-2) substitutions per nucleotide per year; 59% of the base changes led to amino acid substitutions, some of which were located within residues 135 to 151, a region involved in neutralization of FMDV. In the esophageal pharyngeal fluid samples, FMDV C3-neutralizing activity was present. Antigenic variation was demonstrated with monoclonal antibodies raised against FMDV C3. Two isolates from carrier cattle differed from the parental virus by 10(2)- or 10(3)-fold decreased reactivity with neutralizing monoclonal antibodies. We suggest that persistent, inapparent infections of ruminants, in addition to being a reservoir of virus, may promote the rapid selection of antigenically variant FMDVs.  相似文献   

8.
Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.As a consequence of the quasispecies population structure, when a virus is subjected to an extreme bottleneck regime, such as successive plaque-to-plaque transfers, it accumulates deleterious mutations that result in fitness loss (reviewed in references 15, 21, and 33). These observations constitute experimental support for the Muller''s ratchet hypothesis, which states that asexual populations of organisms tend to acquire deleterious mutations unless compensatory mechanisms (such as sex or recombination) intervene (39, 41). Several lines of evidence indicate that population bottlenecks are abundant in the life cycle of viruses, both during host-to-host transmission and during intrahost replication (2, 8, 10, 22, 26, 32, 42, 45-48, 52, 53). Most studies have addressed the effects of bottlenecks on the reduction of intramutant spectrum diversity in relation to virus survival and persistence, effects on fitness, or as promoters of stochastic processes and drift in viral evolution. Yet the possible biological effects of specific mutations fixed as a result of bottleneck events remain largely unexplored.Experimental designs consisting of many successive plaque-to-plaque transfers, without intervening large-population passages, are ideal for obtaining viral clones that are debilitated by the occurrence of mutations because negative selection is highly attenuated (15, 21, 33). The deleterious nature of some mutations that become fixed in viral genomes subjected to repeated bottlenecks can be inferred from their position in the viral genome and then confirmed experimentally. For example, an internal tract of four oligoadenylate residues that precede the second functional AUG initiation codon of foot-and-mouth disease virus (FMDV) was invariant among natural isolates of the virus or among populations subjected to large-population passages. Yet this oligoadenylate tract was extended in several clones subjected to plaque-to-plaque transfers (17). This lesion, unique to clones that had undergone multiple bottleneck transfers, was associated with a decrease in replicative fitness (4, 17), and some of the clones displayed reduced levels of Lb, the form of the leader proteinase L synthesized from the second functional AUG initiation codon (17). However, the effect of other mutations that accumulate as a result of bottleneck transfers cannot be easily anticipated. Some mutations will likely be neutral while others are deleterious, and there is experimental and in silico evidence that a few mutations are advantageous or compensatory, thereby allowing the virus to survive despite continuous accumulation of mutations (21, 28).Nonsynonymous mutations in coding regions may perturb the structure and function of viral proteins. Despite evidence that such mutations can affect viral fitness, in very few cases the biochemical effect of a lesion associated with the operation of Muller''s ratchet has been identified. Here, we report that the accumulation of mutations in FMDV subjected to plaque-to-plaque passages results in a gradual increase in the thermosensitivity of infectious progeny production, with a several-logarithm decrease in progeny production at 42°C relative to 37°C at plaque transfer 230. Part of the thermosensitivity at early transfers could be traced to a single amino acid substitution, M54I, located at the B-C loop of capsid protein VP1. This loop corresponds to antigenic site 3 of FMDV (30, 36). We show that the M54I mutation decreases the proteolytic cleavage between capsid proteins VP3 and VP1 and that the impairment is manifested more severely at high temperatures. This cleavage is catalyzed by proteinase 3Cpro (31, 50, 51, 56), which does not show any substitution in the mutant FMDV clone that harbored the M54I mutation in VP1. Thus, a distant amino acid located at an antigenic site of a virus can affect a protein processing step catalyzed by wild-type 3Cpro. We discuss possible models to explain the link between two disparate phenotypic traits, antigenicity and protein processing, in the life cycle of a virus.  相似文献   

9.
Mateo R  Mateu MG 《Journal of virology》2007,81(4):1879-1887
The evolution of foot-and-mouth disease virus (FMDV) (biological clone C-S8c1) in persistently infected cells led to the emergence of a variant (R100) that displayed increased virulence, reduced stability, and other modified phenotypic traits. Some mutations fixed in the R100 genome involved a cluster of highly conserved residues around the capsid pores that participate in interactions with each other and/or between capsid protomers. We have investigated phenotypic and genotypic changes that occurred when these replacements were introduced into the C-S8c1 capsid. The C3007V and M3014L mutations exerted no effect on plaque size or viral yield during lytic infections, or on virion stability, but led to a reduction in biological fitness; the D3009A mutation caused drastic reductions in plaque size and viability. Remarkably, competition of the C3007V mutant with the nonmutated virus invariably resulted in the fixation of the D3009A mutation in the C3007V capsid. In turn, the presence of the D3009A mutation invariably led to the fixation of the M3014L mutation. In both cases, two individually disadvantageous mutations led, together, to an increase in fitness, as the double mutants outcompeted the nonmutated genotype. The higher fitness of C3007V/D3009A was related to a faster multiplication rate. These observations provide evidence for a chain of linked, compensatory mutational events in a defined region of the FMDV capsid. Furthermore, they indicate that the clustering of unique amino acid replacements in viruses from persistent infections may also occur in cytolytic infections in response to changes caused by previous mutations without an involvement of the new mutations in the adaptation to a different environment.  相似文献   

10.
Duration and fitness dependence of quasispecies memory.   总被引:11,自引:0,他引:11  
The duration and fitness dependence of memory in viral quasispecies evolving in cell culture have been investigated using two genetic markers of foot-and-mouth disease virus (FMDV). In lineages of antigenic variant FMDV RED, which reverted to FMDV RGD, memory FMDV RED genomes were detected after 50 infectious cycles, and memory level was fitness dependent. In growth-competition experiments between a reference FMDV RGD and two different FMDV RED populations, a 7.6-fold higher fitness of the initial FMDV RED population resulted in 30 to 100-fold higher memory level. In lineages of low-fitness clones containing an elongated internal polyadenylate tract, revertants lacking excess adenylate residues became dominant by passage 20. However, genomes including a larger number of adenylate residues were detected as memory genomes after at least 150 infectious cycles. Thus, quasispecies memory can be durable and is fitness dependent, as predicted from the growth competition of two mutant forms of a genome. An understanding of factors influencing quasispecies memory levels and duration may have implications for the extended diagnosis of viruses based on the quantification of minority genomes.  相似文献   

11.
We document the rapid alteration of fitness of two foot-and-mouth disease virus (FMDV) mutants resistant to a neutralizing monoclonal antibody. Both mutants showed a selective disadvantage in BHK-21 cells when passaged in competition with their parental FMDV. Upon repeated replication of the mutants alone, they acquired a selective advantage over the parental FMDV and fixed additional genomic substitutions without reversion of the monoclonal antibody-resistant phenotype. Thus, variants that were previously kept at low frequency in the mutant spectrum of a viral quasispecies rapidly became the master sequence of a new genomic distribution and dominated the viral population.  相似文献   

12.
13.
RNA viruses replicate near the error threshold for maintenance of genetic information, and an increase in mutation frequency during replication may drive RNA viruses to extinction in a process termed lethal mutagenesis. This report addresses the efficiency of extinction (versus escape from extinction) of foot-and-mouth disease virus (FMDV) by combinations of the mutagenic base analog 5-fluorouracil (FU) and the antiviral inhibitors guanidine hydrochloride (G) and heparin (H). Selection of G- or H-resistant, extinction-escape mutants occurred with low-fitness virus only in the absence of FU and with high-fitness virus with some mutagen-inhibitor combinations tested. The combination of FU, G, and H prevented selection of extinction-escape mutants in all cases examined, and extinction of high-fitness FMDV could not be achieved by equivalent inhibitory activity exerted by the nonmutagenic agents. The G-resistant phenotype was mapped in nonstructural protein 2C by introducing the relevant mutations in infectious cDNA clones. Decreases in FMDV infectivity were accompanied by modest decreases in the intracellular and extracellular levels of FMDV RNA, maximal intracellular concentrations of FU triphosphate, and a decrease in the intracellular concentrations of UTP. In addition to indicating a key participation of mutagenesis in virus extinction, the results suggest that picornaviruses provide versatile experimental systems to approach the problem of extinction failure associated with inhibitor-escape mutants during treatments based on enhanced mutagenesis.  相似文献   

14.
Repeated bottleneck passages result in fitness losses of RNA viruses. In the case of human immunodeficiency virus type 1 (HIV-1), decreases in fitness after a limited number of plaque-to-plaque transfers in MT-4 cells were very drastic. Here we report an analysis of entire genomic nucleotide sequences of four HIV-1 clones derived from the same HIV-1 isolate and their low-fitness progeny following 7 to 15 plaque-to-plaque passages. Clones accumulated 4 to 28 mutations per genome, with dominance of A --> G and G --> A transitions (57% of all mutations) and 49% nonsynonymous replacements. One clone-but not three sibling clones-showed an overabundance of G --> A transitions, evidencing the highly stochastic nature of some types of mutational bias. The distribution of mutations along the genome was very unusual in that mutation frequencies in gag were threefold higher than in env. Particularly striking was the complete absence of replacements in the V3 loop of gp120, confirmed with partial nucleotide sequences of additional HIV-1 clones subjected to repeated bottleneck passages. The analyses revealed several amino acid replacements that have not been previously recorded among natural HIV-1 isolates and illustrate how evolution of an RNA virus genome, with regard to constant and variable regions, can be profoundly modified by alterations in population dynamics.  相似文献   

15.
Lethal mutagenesis is an antiviral strategy that aims to extinguish viruses as a consequence of enhanced mutation rates during virus replication. The molecular mechanisms that underlie virus extinction by mutagenic nucleoside analogues are not well understood. When mutagenic agents and antiviral inhibitors are administered sequentially or in combination, interconnected and often conflicting selective constraints can influence the fate of the virus either towards survival through selection of mutagen-escape or inhibitor-escape mutants or towards extinction. Here we report a study involving the mutagenesis of foot-and-mouth disease virus (FMDV) by the nucleoside analogue ribavirin (R) and the effect of R-mediated mutagenesis on the selection of FMDV mutants resistant to the inhibitor of RNA replication, guanidine hydrochloride (GU). The results show that under comparable (and low) viral load, an inhibitory activity by GU could not substitute for an equivalent inhibitory activity by R in driving FMDV to extinction. Both the prior history of R mutagenesis and the viral population size influenced the selection of GU-escape mutants. A sufficiently low viral load allowed continued viral replication without selection of inhibitor-escape mutants, irrespective of the history of mutagenesis. These observations imply that reductions of viral load as a result of a mutagenic treatment may provide an opportunity either for immune-mediated clearing of a virus or for an alternative antiviral intervention, even if extinction is not initially achieved.  相似文献   

16.
The population dynamics of RNA viruses have an important influence on fitness variation and, in consequence, on the adaptative potential and virulence of this ubiquitous group of pathogens. Earlier work with vesicular stomatitis virus showed that large population transfers were reproducibly associated with fitness increases, whereas repeated transfers from plaque to plaque (genetic bottlenecks) lead to losses in fitness. We demonstrate here that repeated five-plaque to five-plaque passage series yield long-term fitness stability, except for occasional stochastic fitness jumps. Repeated five-plaque passages regularly alternating with two consecutive large population transmissions did not cause fitness losses, but did limit the size of fitness gains that would otherwise have occurred. These results underscore the profound effects of bottleneck transmissions in virus evolution.  相似文献   

17.
The 3′ end region of foot-and-mouth disease virus (FMDV) consists of two distinct elements, a 90 nt untranslated region (3′-NCR) and a poly(A) tract. Removal of either the poly(A) tract or both the 3′-NCR and the poly(A) tract abrogated infectivity in susceptible cells in the context of a full-length cDNA clone. We have addressed the question of whether the impairment of RNA infectivity is related to defects at the translation level using a double approach. First, compared to the full-length viral RNA, removal of the 3′ sequences reduced the efficiency of translation in vitro. Secondly, a stimulatory effect of the 3′ end sequences on IRES-dependent translation was found in vivo using bicistronic constructs. RNAs carrying the FMDV 3′ end sequences linked to the second cistron showed a significant stimulation of IRES-dependent translation, whereas cap-dependent translation was not affected. Remarkably, IRES-dependent stimulation exerted by the poly(A) tract or the 3′-NCR seems to be the result of two separate events, as the 3′-NCR alone enhanced IRES activity on its own. Under conditions of FMDV Lb protease-induced translation shut-off, the stimulation of IRES activity reached values above 6-fold in living cells. A northern blot analysis indicated that IRES stimulation was not the consequence of a change in the stability of the bicistronic RNA produced in transfected cells. Analysis of the RNA-binding proteins interacting with a mixture of 3′ end and IRES probes showed an additive pattern. Altogether, our results strongly suggest that individual signals in the viral 3′ end ensure stimulation of FMDV translation.  相似文献   

18.

Background

Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI) on progeny production of several RNA viruses under enhanced mutagenesis.

Results

The effect of the mutagenic base analogue 5-fluorouracil (FU) on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV) can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI), or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV), but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV) and encephalomyocarditis virus (EMCV). The increase in mutation frequency and Shannon entropy (mutant spectrum complexity) as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results.

Conclusions

(i) Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii) This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii) The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv) LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v) The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.  相似文献   

19.
Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.  相似文献   

20.
Foot-and-mouth disease virus (FMDV), like other RNA viruses, exhibits high mutation rates during replication that have been suggested to be of adaptive value. However, even though genetic variation in RNA viruses and, more specifically, FMDV has been extensively examined during virus replication in a wide variety of in vitro cell cultures, very little is known regarding the generation and effects of genetic variability of virus replication in the natural host under experimental conditions and no genetic data are available regarding the effects of serial passage in natural hosts. Here, we present the results of 20 serial contact transmissions of the highly pathogenic, pig-adapted O Taiwan 97 (O Tw97) isolate of FMDV in swine. We examined the virus genomic consensus sequences for a total of 37 full-length viral genomes recovered from 20 in vivo passages. The characteristics and distributions of changes in the sequences during the series of pig infections were analyzed in comparison to the O Tw97 genomes recovered from serially infected BHK-21 cell cultures. Unexpectedly, a significant reduction of virulence upon pig passages was observed, and finally, interruption of the viral transmission chain occurred after the14th pig passage (T14). Virus was, however, isolated from the tonsils and nasal swabs of the asymptomatic T15 pigs at 26 days postcontact, consistent with a natural establishment of the carrier state previously described only for ruminants. Surprisingly, the region encoding the capsid protein VP1 (1D) did not show amino acid changes during in vivo passages. These data demonstrate that contact transmission of FMDV O Tw97 in pigs mimics the fitness loss induced by the bottleneck effect, which was previously observed by others during plaque-to-plaque FMDV passage in vitro, suggesting that unknown mechanisms of virulence recovery might be necessary during the evolution and perpetuation of FMDV in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号