首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hunting can change abundances of vertebrate seed predators and seed dispersers, causing species‐specific changes in seed dispersal and seed predation and altering seedling communities. What are the consequences of these changes for the adult plant community in the next generation and beyond? Here, I derive equations showing how reduced seed dispersal reduces plant reproduction by intensifying kin competition, increasing vulnerability to natural enemies, and reducing the proportion of seeds passing through disperser guts. I parameterize these equations with available empirical data to estimate the likely effects on next‐generation abundances. I then consider the indirect effects and longer‐term feedbacks of changed seed or adult abundances on reproductive rates due to density‐dependent interactions with natural enemies and mutualists, as well as niche differentiation with competitors, and discuss their likely qualitative effects. The factors limiting seed disperser and seed predator populations in natural and hunted forests emerge as critical for determining the long‐term effects of hunting on rates of seed dispersal and seed predation. For example, where seed dispersers are held to a constant abundance by hunters, decreases in the availability of their preferred food plants are expected to lead to increased per‐seed dispersal probabilities, potentially to the point of compensating for the initial disperser decline. I close by discussing the likely reversibility of hunting‐induced changes in tropical forests and key questions and directions for future research.  相似文献   

2.
Seed sowing is a common early step in restoration, but seed consumers can impede plant establishment and alter community structure. Moreover, seed consumers vary in feeding behaviors and the relative importance of different seed consumer groups during restoration are not well understood. At 12 first‐year prairie restorations in Michigan, we studied seed predation using seed removal trays to ask: What is the relative magnitude of seed removal by insects and mammals? Do seed removal rates change over the growing season? Do habitat edges influence seed removal? At what rates are 10 prairie plant species' seeds removed by mammals and insects? Seed removal depended on consumer type, time of year, and seed species. Insects accounted for the majority of seed removal, contrary to previous research in similar systems. In May, insects removed 1.8 times more seeds than mammals, while in August, they removed 5.1 times more. There was greater seed removal in August. During May 28% of seeds were removed, compared to 54% of seeds removed during August, an increase driven by insects. Edge proximity did not influence seed removal. Certain seed species were removed more than others. For example, Lespedeza capitata (round‐headed bush clover) was always removed at high rates, whereas Coreopsis lanceolata (lance‐leaved coreopsis) and Andropogon gerardii (big bluestem) were always removed at low rates. Mammals and insects showed different preferences for several species. This research suggests a prominent role of seed predation, particularly by insects, for early prairie restoration dynamics, with influences varying temporally and among species.  相似文献   

3.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

4.
Co-evolution of seed size and seed predation   总被引:3,自引:0,他引:3  
Using the evolutionarily stable strategy (ESS) approach in a model for the co-evolution of seed size and seed predation, I show that seed size variation within individual plants is favoured if there is a trade-off in the predator's attack rate for different seed sizes. A single seed size is not evolutionarily stable because a predator that is optimally adapted to one particular seed size cannot prevent invasion by plants with a different seed size. The model generates the following predictions. The ESS consists of a continuous range of seed sizes. Small seeds tend to be attacked more frequently than big seeds. Plants with many resources and plants with low (frequency-independent) juvenile mortality have more variable seeds than plants with few resources and a high juvenile mortality. Seed size variation is higher in fluctuating populations regulated by seed predation alone than in stable populations (partially) regulated by seedling competition. Predator searching behaviour does not directly affect the ESS seed size range, but may have an indirect effect by affecting population stability or the significance of seedling competition as a population regulating mechanism. Moreover, seed size distributions are found to be more skewed in favour of small seeds if predation is spatially non-uniform than if predation is more even. Application of the model to systems of several co-evolving plant and predator species is discussed.  相似文献   

5.
Schinus molle (Peruvian pepper tree) was introduced to South Africa more than 150 years ago and was widely planted, mainly along roads. Only in the last two decades has the species become naturalized and invasive in some parts of its new range, notably in semi‐arid savannas. Research is being undertaken to predict its potential for further invasion in South Africa. We studied production, dispersal and predation of seeds, seed banks, and seedling establishment in relation to land uses at three sites, namely ungrazed savanna once used as a military training ground; a savanna grazed by native game; and an ungrazed mine dump. We found that seed production and seed rain density of S. molle varied greatly between study sites, but was high at all sites (384 864–1 233 690 seeds per tree per year; 3877–9477 seeds per square metre per year). We found seeds dispersed to distances of up to 320 m from female trees, and most seeds were deposited within 50 m of putative source trees. Annual seed rain density below canopies of Acacia tortillis, the dominant native tree at all sites, was significantly lower in grazed savanna. The quality of seed rain was much reduced by endophagous predators. Seed survival in the soil was low, with no survival recorded beyond 1 year. Propagule pressure to drive the rate of recruitment: densities of seedlings and sapling densities were higher in ungrazed savanna and the ungrazed mine dump than in grazed savanna, as reflected by large numbers of young individuals, but adult : seedling ratios did not differ between savanna sites. Frequent and abundant seed production, together with effective dispersal of viable S. molle seed by birds to suitable establishment sites below trees of other species to overcome predation effects, facilitates invasion. Disturbance enhances invasion, probably by reducing competition from native plants.  相似文献   

6.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

7.
Question: What is the role of dispersal, persistent soil seed banks and seedling recruitment in population persistence of fleshy‐fruited obligate seeding plant species in fire‐prone habitats? Location: Southeastern Australia. Methods: We used a long‐term study of a shrubby, fleshy‐fruited Persoonia species (Proteaceae) to examine (1) seed removal from beneath the canopy of adult plants; (2) seedling recruitment after fire; (3) the magnitude and location of the residual soil seed bank; and (4) the implications for fire management of obligate seeding species. We used demographic sampling techniques combined with Generalised Linear Modelling and regression to quantify population changes over time. Results: Most of the mature fruits (90%) on the ground below the canopy of plants were removed by Wallabia bicolor (Swamp wallaby) with 88% of seeds extracted from W. bicolor scats viable and dormant. Wallabies play an important role in moving seeds away from parent plants. Their role in occasional long distance dispersal events remains unknown. We detected almost no seed predation in situ under canopies (< 1%). Seedling recruitment was cued to fire, with post‐fire seedling densities 6‐7 times pre‐fire adult densities. After fire, a residual soil seed bank was present, as many seeds (77‐100%) remained dormant and viable at a soil depth where successful future seedling emergence is possible (0‐5 cm). Seedling survival was high (> 80%) with most mortality within 2 years of emergence. Plant growth averaged 17 cm per year. The primary juvenile period of plants was 7–8 years, within the period of likely return fire intervals in the study area. We predicted that the study population increased some five‐fold after the wildfire at the site. Conclusions: Residual soil seed banks are important, especially in species with long primary juvenile periods, to buffer the populations against the impact of a second fire occurring before the seed bank is replenished.  相似文献   

8.
To avoid seed predation, plants may invest in protective seed tissues. Often related to seed size, allocation in seeds' physical defenses can also be influenced by dispersers. We explore the relationships between seed traits (seed mass and hardness) and seed removal in 22 Myrtaceae species of the Brazilian Atlantic Forest, a dominant and diverse fleshy-fruited taxon dispersed by birds, rodents, and other mammals. Our goal is to understand how seed traits influence seed removal rates, and whether dispersers can affect tissue allocation in the seed coat. Seeds were exposed to field removal experiments. In the laboratory, total seed mass and seed coat mass were obtained. To evaluate the influence of seed traits on removal, we performed Kruskal–Wallis and Simple Linear Regression tests. We assessed seed coat and seed mass covariation through standardized major-axis allometric regressions. Harder seeds were larger than softer ones. Seed traits affect removal rates, as tougher and heavier seeds had lower removal. Seed mass significantly predicts seed coat proportion in seven of the 14 species tested. Bird-dispersed species tend to exhibit lower proportions of seed coat as seed mass increases, whereas rodent-dispersed species apparently present the opposite trend, with seed coat proportion increasing with seed mass. Such difference may be caused by the contrasting seed predation pressure represented by birds and rodents. Energy allocation for defense, expressed in seed coat proportion, is greater in large seeds, as these are mostly dispersed by rodents whose propensity to cache and disperse seeds is greater for large and well-protected seeds.  相似文献   

9.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

10.
Abstract The intensity of seed predation the invasive tropical legume Leucaena leucocephala by the bruchid Acanthoscelides macropthalmus was investigated in south‐eastern Queensland, Australia. The number of seeds damaged by A. macropthalmus as a proportion of total seeds available was found to increase the longer the pods remained on the tree. Seed predation ranged from a mean of 10.75% of seeds on pods that remained on the plant for 1 month and increased to 53.54% for pods that remained of the plant for 4 months. The low bruchid populations at high pod densities results in ‘predator satiation’. However, pods dehisce over time and the proportion of pods available over time to the bruchid correspondingly declines. By the time bruchid densities build up, most pods have dehisced and the seeds consequently escape predation. As a result the number of seeds lost to bruchid damage increases only marginally over time. Despite the levels of seed predation observed over the course of the study, the number of seeds in the soil seedbank almost doubled over time increasing from 8.5 seeds m?3 to 15.5 seeds m?3 over a 4‐month period. Levels of seed predation and addition of seeds to the soil seedbank were not correlated. The taxonomic (subspecies) status and apparency of host plants as measured by plant and patch traits (average plant height, density of podding plants and patch size) did not influence levels of seed predation. Pre‐dispersal seed predation studies need to take into account the pod/seed retention behaviour of the plant. The ability of the bruchid to regulate the invasiveness of Leucaena through influencing its demography is likely to be diminished if the insect populations cannot increase rapidly enough to use the seeds before pod dehiscence.  相似文献   

11.
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

12.
Human‐induced changes to fire regimes result in smaller, more patchy fires in many peri‐urban areas, with a concomitant increase in potential edge effects. In sclerophyll vegetation, many structurally dominant serotinous plants rely on the immediate post‐fire environment for recruitment. However, there is little information about how fire attributes affect seed predation or recruitment for these species. We examined the influence of distance to unburnt vegetation on post‐dispersal seed predation for five serotinous species from sclerophyll vegetation in the Sydney region, south‐eastern Australia; Banksia serrata L.f., Banksia spinulosa Sm. var. spinulosa, Hakea gibbosa (Sm.) Cav., Hakea teretifolia (Salisb.) Britten (all Proteaceae) and Allocasuarina distyla (Vent.) L. Johnson (Casuarinaceae). We used cafeteria trials and differential exclusion of vertebrates and invertebrates to test whether rates of seed removal for these five species differed among (i) unburnt, (ii) burnt‐edge (approx. 10 m from unburnt vegetation) and (iii) burnt‐interior (approx. 100 m from unburnt vegetation) locations. When all animals had access to seeds, seeds were removed at lower rates from burnt‐interior areas than from other locations. Vertebrates (small mammals) showed this pattern markedly the first time the experiment was run, but in a repeat trial this effect disappeared. Rate of seed removal by invertebrates differed among plant species but we did not detect any such differences for removal by vertebrates. Overall rates of seed removal also differed significantly between the two fires studied. Our results indicate that small mammal seed predation can be substantial for large‐seeded serotinous shrubs, and that differences in the perimeter: area ratio, severity or size of a fire are likely to affect seed predation.  相似文献   

13.
Mast-seeding behaviour was monitored in 18 populations of eight species of the African cycad genus Encephalartos between 1988 and 1991. The coefficient of variation (V) in annual cone production for each population ranged between 88 and 200, indicating large fluctuations in reproductive effort between years. Data were collected to determine whether mast-seeding reduced levels of predispersal seed predation by satiating seed predators in mast years and whether it resulted in a reproductive advantage over plants which reproduced more frequently. Masting intensity was greatest in those populations in which individual plants suffered the highest levels of predispersal seed predation in years when only a few plants produced seeds. The principal seed predators were two congeneric weevil species, Antliarhinus zamiae and A. signatus, which develop exclusively on cycad seeds. The lowest intensity of mast-seeding was recorded for cycad populations with low levels of seed predation and in which A. zamiae and A. signatus occurred only in low numbers or were entirely absent. Larger seed crops appeared to result in lower levels of seed predation by A. zamiae and A. signatus in four populations of E. altensteinii, and differences in seed crop size accounted for 48–66% of variation in levels of seed predation in populations of five cycad species. In one population of E. altensteinii, lower levels of seed predation in plants reproducing periodically resulted in a reproductive advantage over plants reproducing more frequently. These results are consistent with the predator satiation hypothesis. However, in most cycad populations, numbers of seed predators did not appear to decrease significantly after a period of 2–8 years between reproductive episodes and, in two of three populations examined, periodic reproduction did not increase the number of seeds surviving to dispersal over a 4-year period. These results are interpreted to mean that periodic reproduction has not evolved in response to selection imposed by seed predators, but that selection may favour those plants which experience lower levels of seed predation by coning in synchrony with the majority of plants in the population.  相似文献   

14.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

15.
Seed predation,pathogen infection and life-history traits in Brassica rapa   总被引:1,自引:1,他引:0  
Herbivory and disease can shape the evolution of plant populations, but their joint effects are rarely investigated. Families of plants of Brassica rapa (Brassicaceae) were grown from seeds collected in two naturalized populations in an experimental garden. We examined leaf infection by the fungus Alternaria, seed predation by a gall midge (Cecidomyiidae) and plant life-history traits. Plants from one population had heavier seeds, were more likely to flower, had less fungal infection, had more seed predation and were more fecund. Fungal infection score and seed predation rate increased with plant size, but large plants still had the greatest number of undamaged fruits. Spatial heterogeneity in the experimental garden was significant; seed predation rate and fecundity varied among blocks. An apparent tradeoff existed between susceptibility to disease and seed predation: plants with the highest fungal infection score had the lowest seed predation rate. Alternaria infection varied between populations, but the disease had no effect on fecundity. Seed predation did reduce fecundity. Damaged fruits had 31.4% fewer intact seeds. However, evidence for additive genetic variation in resistance to seed predation was weak. Therefore, neither disease nor seed predation was likely to be a strong agent of genetically based fecundity selection.  相似文献   

16.
We studied the impact of the seed damaging gall midge larva Geomyia alpina on its perennial alpine host plant Geum reptans. We analysed the effect of seed predation on reproduction by seeds, i.e. seed number, seed mass, and seed viability and on growth and clonal propagation of non-protected plants in comparison to plants protected from predation by an insecticide. Additionally, we assessed the consequences of seed predation for population growth using matrix projection modelling. Seed predation resulted in a decrease in total seed mass per flower head by 23.8% in non-protected plants (P < 0.05). Individual seed mass decreased with increasing infestation intensity (P < 0.05). Seed number remained unaffected because the sucking feeding behaviour by gall midge larvae does not evoke seed abortion. Percent germination of seeds from non-protected plants was reduced by 97.9% compared to seeds from protected plants. According to reduced seed viability, modelling revealed a decrease in population growth rate from λ = 1.055 to λ = 1.041. Predation did neither influence total plant biomass nor biomass fractions. But stolon dry-weight of non-protected plants increased by 24.1% (P < 0.05), which may indicate a trade-off between sexual reproduction and clonal propagation. Our results demonstrate that despite substantial reduction of viable seeds, predation by gall midge larvae only slightly affected population growth of G. reptans suggesting that in this alpine species, persistence by longevity and clonal propagation can balance potential seed losses by predation, at least for local population growth.  相似文献   

17.
We investigated seed transfer, i.e. the seed movement away from a source canopy to areas beneath heterospecific canopies, among the ornithochorous tree species Taxus baccata, Ilex aquifolium and Crataegus monogyna in temperate secondary forests in NW Spain, by analysing the composition of multispecific seed rain beneath the canopy of each species, at four sites and for 2 years. To evaluate the consequences on seed fate, we estimated predation by rodents in manipulated seed rains, representing variable levels of relative proportion and total density for combinations of a preferred species paired with a less-preferred species. Seed rain under Taxus canopies was dominated by Taxus seeds, which occurred in low proportion under heterospecific canopies. Ilex seeds dominated the areas under Ilex but accounted for 20–40% of seeds under heterospecific trees. Crataegus seeds were not dominant in any of the microhabitats. The probability of being deposited beneath a heterospecific canopy was much higher for Ilex and Crataegus than for Taxus. The effects of seed rain composition on post-dispersal seed predation were species-specific. Taxus seeds experienced lower predation when occurring in a background of seeds dominated by heterospecific, Ilex or Crataegus, seeds. Crataegus seeds escaped predation more successfully in high-density patches, independently of seed clump composition. Predation on Ilex seeds was independent to both the density and the composition of seed clump. Seed transfer among heterospecific tree species may contribute to shape the template of propagule abundances from which forest will develop, by generating seed combinations favourable to escape from predation.  相似文献   

18.
GELDENHUYS, C. J., 1993. Reproductive biology and population structures of Podocarpus falcatus and P. latifolius in southern Cape forests This study concerns morphological differences of the fruit types of two Podocarpus species in relation to their different population recruitment rates. First, sampling data from the mixed evergreen forests of Gouna and Groenkop in the southern Cape, South Africa, were used to describe the population structures of the two species. Podocarpus falcatus is widely scattered at low density and has a low recruitment rate. Podocarpus latifolius is widespread and common at high density and has a high recruitment rate. Second, the morphology of their fruits and seeds was studied in relation to seed dispersal, predation and germination. The species represent the two basic ‘fruit’ types of the genus. Podocarpus falcatus produces a heavy fruit, but invests mostly in dispersal (with a yellow fleshy pulp or epimatium enclosing the seed) and protective tissue (stony shell or sclerotesta) and very little into endosperm food reserves for the embryo. Podocarpus latifolius produces a light fruit which is composed mainly of dispersal tissue (blackish-purple fleshy receptacle) with protective tissue (thin leathery epimatium without woody sclerotesta) and food reserves for the embryo. The structure of the P. falcatus fruit is related to adaptation for protection during seed dispersal by bats. The stony sclerotesta delays germination for about one year and thereby causes the exposure of the seed to high post-dispersal predation by rodents and bushpig. Seedling recruitment is low. In contrast birds and baboons eat the receptacle of the P. latifolius fruit and discard the seed undamaged. Less protective tissue is required. Seeds germinate within two to four months and recruitment is high. The structural differences of the two fruit types also have predictive value for the relative success of the different sections of the genus. Section Afrocarpus (to which P. falcatus belongs) and related sections have relatively restricted geographic distributions. Section Eupodocarpus (to which P. latifolius belongs) and related sections have wide distributions.  相似文献   

19.
Narita  Kenji  Wada  Naoya 《Plant Ecology》1998,135(2):177-184
Reproductive traits of a lignified annual plant, Blepharis sindica were studied in relation to the formation of an 'aerial seed pool' on dead plants in an arid grassland in the Thar Desert of northwestern India. The dead plants remained standing on the soil surface and retained fruits for more than one year. Aerial seed pools developed about 6 cm above the ground. There were no seed pools on or below the ground surface. Only 5.7% of seeds died on dead plants because of insect predation or fungi infection during one year. Seed release was cued by rainfall, and a fraction of seeds on the aerial seed pools was released in each rainfall event. After 13 rainfall events during the monsoon season, 25% of seeds was still retained on the plants. Seed predation on the ground surface was intensive; all cones placed on the soil surface were removed within four days, and 97% of fruits were removed within 10 days. Fifty percent of seeds germinated within 3.5 h, and there were no differences in viability and time required for germination between first year seeds and older seeds. The results indicate that the aerial seed-holding on dead plants is an available way to avoid seed predation in harsh desert environments where seed predation is intense and favorable periods for growth are temporally limited and unpredictable.  相似文献   

20.
Fungal endophytes of grasses are often included in agricultural management and in ecological studies of natural grass populations. In European agriculture and ecological studies, however, grass endophytes are largely ignored. In this study, we determined endophyte infection frequencies of 13 European cultivars and 49 wild tall fescue (Schedonorus phoenix) populations in Northern Europe. We then examined seed production and seed predation of endophyte-infected (E+) and endophyte-free (E?) tall fescue (in wild grass populations and in a field experiment) and meadow fescue (Schedonorus pratensis; in a field experiment only). Endophytes were detected in only one of the 13 cultivars. In contrast, >90% of wild tall fescue plants harbored endophytes in 45 wild populations but were absent in three inland populations in Estonia. In three wild tall fescue study sites, 17%, 22%, and 56% of the seeds were preyed upon by the cocksfoot moth. Endophyte infection did not affect seed mass of tall fescue in the field experiment. However, seed predation was lower in E+ than E? grasses in the two tall fescue populations with higher predation rates. For meadow fescue, the mean number of seeds from E+ plants was higher than E? plants, but E? and E+ seeds had equal rates of predation by the moth. Our results suggest that the effects of grass endophytes on seed production and cocksfoot moth seed predation vary considerably among grass species, and the effects may depend on herbivore pressure and other environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号