首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Embryo DNA, isolated from ungerminated seeds of Lupinus angustifolius L., contains an exceptionally high amount of guanine-cytosine-rich satellite DNA. The thermal denaturation curve of total embryo DNA is biphasic with an inflexion point at 62% denaturation, indicating the presence of satellite DNA. The satellite fraction could be separated from the mainband DNA by three successive preparative CsCl-gradient centrifugations. The densities of the DNA fractions are 1.7045 g cm-3 and 1.6925 g cm-3, respectively. The percentages of guanine-cytosine calculated from these densities are comparable to the percentages of GC calculated from the melting temperatures. Finally, ressociation studies prove that foldback DNA and highly repeated sequences are much more frequent in the satellite DNA fraction than in the mainband DNA.Abbreviation C o t the product of the DNA concentration (mol nucleotides l-1) and the time (s) of incubation in a DNA reassociation reaction - GC guanine-cytosine - np nucleotide parirs - T temperature interval between 16 and 84% denaturation  相似文献   

2.
The pattern of sequence organization in the regions of the pea genome near sequences coding for mRNA differs significantly from that in total DNA. Interspersion of repeated and single copy sequences is so extensive that 85% of 1300 nucleotide-long fragments contain highly repetitive sequences (about 5000 copies per haploid genome). However, data presented here demonstrate that sequences which code for mRNA are enriched in the small fraction of fragments which do not contain these highly repetitive sequences. Thus, in contrast to the great majority of other sequences in the genome, most mRNA coding sequences are not located within 1300 nucleotides of highly repetitive elements. Moreover, our data indicate that those repeats (if any) which are closely associated with mRNA coding sequences belong to low copy number families characterized by an unusually low degree of sequence divergence.Abbreviations NT nucleotides - NTP nucleotide pairs - Cot the product of molar concentration of DNA nucleotides and time of incubation (mol s/L) - Tm the temperature at which half of the nucleotides are unpaired - Tm,i the temperature at which half of the complementary strands are completely separated - PIPES 1, 4, Piperazinediethane sulfonic acid - PB an equimolar mixture of NaH2PO4 and Na2HPO4 (pH 6.8).  相似文献   

3.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

4.
DNA sequence organization in the genome of Nicotiana tabacum   总被引:2,自引:2,他引:0  
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

5.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

6.
Evolutionary variation of aspartate aminotransferase and superoxide dismutase isoenzymes in 14 wild and cultivated species ofPhaseolus andVigna has been studied by electrophoresis and isoelectric focusing in polyacrylamide gel. The American cultivated beans of the genusPhaseolus s. str.,P. vulgaris, P. coccineus, P. lunatus andP. acutifolius, form a homogeneous group with only minor isoenzyme variation. The genusVigna, on the contrary, proves to be heterogeneous in isozyme characters. Several clusters of taxa can be distinguished in close correspondence with modern treatments of the genus. The isoenzyme data support the inclusion of the Asian Azuki beans of subg.Ceratotropis inVigna, but argue against the transfer of the S. American speciesP. adenantha. The cowpea complexV. unguiculata s. lato of sect.Catiang forms an uniform and isolated group, distinct from other sections of subg.Vigna, and shows affinity toPhaseolus s. str. by some isoenzymes. It is suggested to removeV. unguiculata s. lato from subg.Vigna and to recognize it as a separate subg.Catiang (DC.)Jaaska & Jaaska, stat. nov.  相似文献   

7.
A comparison has been made of the repeated nucleotide sequences from 3 Microtinae which possess varying amounts of constitutive heterochromatin per cell nucleus. Eight repetitive fractions of DNA, ranging in Cot values from 10−3 to 10−3, were obtained by reassociation of sheared, denatured DNA and fractionation on hydroxyapatite. At Cot values of less than 1, 3 fractions were isolated that amounted to 18.7, 10.0 and 7.4 % of the total DNA of Microtus agrestis, Microtus pennsylvanicus and Ellobius lutescens, respectively, in agreement with the amounts of heterochromatin in these species. At Cot values higher than 1, the amounts of repeated sequences were more comparable and constituted about 12 to 14 % of the DNA. Thermal denaturation profiles of all the repetitive fractions showed a good deal of order in the reassociated duplexes, with an average hyperchromicity of 20 %. Upon density gradient centrifugation in neutral CsCl, the fractions from M. pennsylvanicus and E. lutescens yielded almost identical patterns and differed significantly from those of M. agrestis. In M. agrestis a fraction of fast-intermediate repetitiveness (reassociating at Cot values between 10−2 and 1) was isolated, amounting to about 12 % of the total DNA. This fraction has a base composition comparable to that of total DNA and represents the major component of the constitutive heterochromatin of giant sex chromosomes that have been isolated by the disruption of brain and liver nuclei and differential centrifugation.  相似文献   

8.
Highly repeated DNA is a main feature of urodele amphibian genomes. InTriturus this class of DNA consists of several sequence families differently arranged at both the molecular and the chromosomal level, showing varying degrees of conservation across species. Present data on highly repeated DNA inTriturus are here summarized and discussed with regard to the evolution and possible functional role of these sequences.  相似文献   

9.
A knowledge of genome organization is important for understanding how genomes function and evolve, and provide information likely to be useful in plant breeding programmes involving hybridization and genetic manipulation. Molecular techniques, including in situ hybridization, molecular cloning and DNA sequencing, are proving valuable tools to investigate the structure, organization, and diversity of chromosomes in agricultural crops. Heterologous labelled 18 s-5.8 s-25 s (pTa71) and 5 s rDNAs (pTa794) were used for in situ hybridization on Vigna unguiculata (L.) Walp. chromosomes. Hybridization with 18 s-5.8 s-25 s rRNA gene probes occurred at the same chromosomal sites which were positive to the CMA fluorochrome. Silver staining of nucleolar-organizing regions indicated that all the rDNA sites detected using the 18 s-5.8 s-25 s rRNA gene probe possessed active genes. Degenerate telomeric repeats gave hybridization signals at the telomeres of most chromosomes and no intercalary sites were detected at metaphase; the sequences appear to have no preferential distribution in interphase nuclei. A repetitive DraI family from V. unguiculata was cloned (pVuKB1) and characterized. The DraI repeat is 488 nucleotides long, AT rich (74%), and hybridized on all chromosomes in the centromeric areas. The presence of this sequence family was investigated by Southern hybridization in different Vigna species and other Leguminoseae. It was only detected in V. unguiculata, and hence represents a species-specific DNA sequence.  相似文献   

10.
Summary Isolated chloroplasts from Pisum sativum were found to contain at least 32 tRNA species. Hybridization of in vitro labeled, identified, chloroplast tRNAs to Pisum chloroplast DNA fragments revealed the locations of the tRNA genes on the circular chloroplast genome. Comparison of this gene map to the maps of Vicia faba and Phaseolus vulgaris showed that the chloroplast genomes of Pisum and Phaseolus are otherwise more closely related than either genome is to the chloroplast genome of Vicia. Furthermore, the results suggest how possible recombination events could be involved in the evolution of these three closely related, but divergent, chloroplast genomes.  相似文献   

11.
Short-term discrimination in assimilation of stable isotopes of carbon was measured for leaves of the C3 speciesPhaseolus vulgaris L. cv. Hawkesbury Wonder andFlaveria pringlei Gandoger, the C4 speciesAmaranthus edulis Speg., and the C3–C4 intermediate speciesPanicum milioides Nees ex. Trin,Flaveria floridana Johnson, andFlaveria anomala B.L. Robinson. Discriminations in the C3 and C4 species were similar to those expected from theoretical considerations. When ambient CO2 pressure was 330 bar the mean discriminations in the C3 species andPanicum milioides were similar, whereas the mean discriminations inF. floridana andF. anomala were less than discrimination in C3 species andPanicum milioides. When ambient CO2 pressure was 100 bar the mean discriminations inPanicum milioides andF. anomala were greater, and that inF. floridana was less, than that inPhaseolus vulgaris. We conclude that the pattern of discrimination inPanicum milioides is consistent with the presence of a glycine shuttle; inF. floridana andF. anomala, discrimination is consistent with the presence of a C4 pathway coupled with the operation of a glycine shuttle.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose, 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) - p a ambient CO2 pressure - p i intercellular CO2 pressure - carbon-isotope discrimination - carbonisotope composition relative to PeeDee Belemnite  相似文献   

12.
The rice BAC-DNA was used as probes and fluorescence in situ hybridization (FISH) was applied to the interphase and metaphase mitotic chromosomes of maize. To optimize the BAC-FISH technique, we respectively assayed the effect of several factors, including maize or rice genomic C o t DNA used as blocking reagent of DNA, washing temperatures and FAD concentration in the washing buffer and in the hybrid solution. The results show that C o t DNA of maize genome blocked the repetitive sequence of the rice BAC-DNA when the C o t value was below 50. Meanwhile, it was necessary to adjust the C o t value according to the different probes and their ratios. Decreasing the concentration of FAD in the hybridization mixtures, adjusting the washing rate after hybridization, and most especially, blocking the ricespecific repetitive sequences of BAC-DNA could improve the positive signals of BAC-FISH. __________ Translated from Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(1): 80–84 [译自: 中国生物化学与分子生物学学报]  相似文献   

13.
GA17, GA19, GA20, GA29, GA44 and 13-hydroxy-GA12, now named GA53, were identified by GC-MS in immature seeds of Vicia faba (broad bean). Also identified were a GA catabolite, two polyhydroxykauranoic acids, and abscisic, phaseic and dihydrophaseic acids. The GAs of Vicia are hydroxylated at C-13, in common with those of other legumes. However the GAs of Vicia are not hydroxylated at C-3, nor do they appear to be readily conjugated. In these respects Vicia resembles Pisum, another member of the tribe Viciae. Vicia differs from Phaseolus and Vigna, of the tribe Phaseoleae, in both these respects.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GAn gibberellin An - GC gas chromatography - GC-MS gas chromatography mass spectrometry - KA kauranoic acid - PA phaseic acid - TLC thin layer chromatography  相似文献   

14.
A genetic linkage map of azuki bean (Vigna angularis) was constructed with molecular and morphological markers using an F2 population of an interspecific cross between azuki bean and its wild relative, V. nakashimae. In total, 132 markers (108 RAPD, 19 RFLP and five morphological markers) were mapped in 14 linkage groups covering 1250 cM; ten remained unlinked. The clusters of markers showing distorted segregation were found in linkage groups 2, 8 and 12. By comparing the azuki linkage map with those of mungbean and cowpea, using 20 RFLP common markers, some sets of the markers were found to belong to the same linkage groups of the respective maps, indicating that these linkage blocks are conserved among the three Vigna species. This map provides a tool for markerassisted selection and for studies of genome organization in Vigna species.  相似文献   

15.
N. Bodor  P. Buchwald 《Proteins》1998,31(1):104-104
Buchwald, P., Bodor, N. Octanol-Water Partition of Nonzwitterionic Peptides: Predictive Power of a Molecular Size-Based Model. Proteins 30:86–99, 1998. Equation 2 should read: P = (CinCfin) Vw/Cfin Vo. In the printed version, the volume ratio (Vw/Vo) incorrectly divides, and not multiplies, the concentration ratio. The publisher apologizes for this error.  相似文献   

16.
Mini- and microsatellites, comprising tandemly repeated short nucleotide sequences, are abundant dispersed repetitive elements that are ubiquitous in eukaryotic genomes. In humans and other bisexual species hypervariable mini- and microsatellite loci provide highly informative systems for monitoring of germline and somatic instability. However, little is known about the mechanisms by which these loci mutate in species that lack effective genetic recombination. Here, multilocus DNA fingerprinting was used to study M13 minisatellite and (GATA) n microsatellite instability in the parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae). DNA fingerprinting of 25 parthenogenetic families, from six isolated populations in Armenia (comprising a total of 84 siblings), using the oligonucleotide (GATA)4 as a hybridization probe, revealed mutant fingerprinting phenotypes in 13 siblings that differed from their mothers in several restriction DNA fragments. In three families (8 siblings), the mutations were present in the germline. Moreover, the mutant fingerprint phenotypes detected in siblings were also present in population DNA samples. No intrafamily variations in DNA fingerprint patterns were observed with the M13 minisatellite probe. Estimates of the mutation rate for (GATA) n microsatellite loci in D. unisexualis showed that it was as high as that seen in some bisexual species, reaching 15% per sibling or 0.95% per microsatellite band. Furthermore, in one case, a somatic (GATA) n microsatellite mutation was observed in an adult lizard. These findings directly demonstrate that mutations in (GATA) n microsatellite loci comprise an important source of genetic variation in parthenogenetic populations of D. unisexualis.Communicated by G. P. Georgiev  相似文献   

17.
The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that 44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.Operated by Union Carbide Corporation for the Energy Research and Development Administration  相似文献   

18.
Summary Evolution and divergence among, species within the genusLathyrus have involved an approximately fivefold increase in the amounts of nuclear DNA. Most species inLathyrus are diploids with the same chromosome number, 2n=14. Significant changes in the amounts of repetitive sequences have accounted for much of the evolutionary DNA variation between species. Seven diploidLathyrus species with a twofold variation in nuclear DNA amounts between them were investigated. Using higher derivative analysis of the thermal denaturation profiles of the reassociated repetitive DNA, the reiteration frequency and divergence of repetitive families were compared. Much variation in the reiteration frequency was observed within and between species. In species with larger 2C DNA amounts repetitive families had on average greater amounts of DNA. Despite the massive differences in DNA amounts, six species were consistently similar in the number of repetitive families in their genomes, and they showed a similar pattern in base sequence divergence. In terms of base sequence relationships the repetitive families appeared to be heterogeneous. The evolutionary significance is discussed.  相似文献   

19.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

20.
Apyrases have been suggested to play important roles in plant nutrition, photomorphogenesis, and nodulation. To help trace the evolution of these genes in the legumes—and possibly, the acquisition of new functions for nodulation—apyrase-containing BACs were sequenced from three legume genomes. Genomic sequences from Medicago truncatula, Glycine max and Lotus japonicus were compared to one another and to corresponding regions in Arabidopsis thaliana. A phylogenetic analysis of apyrase homologs from these regions and sequences from other legume species, as well as other plant families, identified a potentially legume-specific clade that contains a well-characterized soybean ( G. soja) apyrase, Gs52, as well as homologs from Dolichos, Lotus , Medicago and Pisum. Sister clades contain homologs from members of Brassicaceae, Solanaceae, Poaceae and Fabaceae. Comparisons of rates of change at synonymous and nonsynonymous sites in the Gs52 and sister clades show rapid evolution in the potentially legume-specific Gs52 clade. The genomic organization of the apyrase-containing BACs shows evidence of gene duplication, genomic rearrangement, and gene conversion among Gs52 homologs. Taken together, these results suggest a scenario of local apyrase gene duplication in an ancestor of the legumes, followed by functional diversification and increased rates of change in the new genes, and further duplications in the Galegae (which include the genera Medicago and Pisum). The study also provides a detailed comparison of genomic regions between two model genomes which are now being sequenced ( M. truncatula and L. japonicus), and a genome from an economically important legume species ( G. max).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by A. Kondorosi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号