首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large gene family encoding the putative cysteine-rich defensins was discovered in Medicago truncatula. Sixteen members of the family were identified by screening a cloned seed defensin from M. sativa (Gao et al. 2000) against the Institute for Genomic Research’s (TIGR) M. truncatula gene index (MtGI version 7). Based on the comparison of their amino acid sequences, M. truncatula defensins fell arbitrarily into three classes displaying extensive sequence divergence outside of the eight canonical cysteine residues. The presence of Class II defensins is reported for the first time in a legume plant. In silico as well as Northern blot and RT-PCR analyses indicated these genes were expressed in a variety of tissues including leaves, flowers, developing pods, mature seed and roots. The expression of these genes was differentially induced in response to a variety of biotic and abiotic stimuli. For the first time, a defensin gene (TC77480) was shown to be induced in roots in response to infection by the mycorrhizal fungus, Glomus versiforme. Northern blot analysis indicated that the tissue-specific expression patterns of the cloned Def1 and Def2 genes differed substantially between M. truncatula and M. sativa. Furthermore, the induction profiles of the Def1 and Def2 genes in response to the signaling molecules methyl jasmonate, ethylene and salicylic acid differed markedly between these two legumes.  相似文献   

2.
3.
Jiang H  Dian W  Liu F  Wu P 《Planta》2004,218(6):1062-1070
Three starch synthase (SS) genes, OsSSII-1, OsSSII-2 and OsSSII-3, were identified in rice (Oryza sativa L.) and localized to chromosomes 10, 2 and 6, respectively. The three OsSSII full-length cDNAs were cloned, and the predicted amino acid sequences were found to share 52–73% similarity with other members of the plant SSII family. The SS activity of each OsSSII was confirmed by expression and enzyme activity assay in Escherichia coli. Expression profile analysis revealed that OsSSII-1 was expressed in endosperms, leaves and roots; OsSSII-2 was mainly expressed in leaves, while OsSSII-3 was mainly expressed in endosperms. Similar to the OsSSI proteins, the OsSSII-2 and OsSSII-3 proteins were found in the soluble as well as the starch-granule-bound fractions in rice. The roles of the OsSSII proteins in starch biosynthesis in rice and the evolutionary relationships of the genes encoding monocotyledonous and dicotyledonous class-II SS enzymes are discussed.Abbreviations CDS Coding domain sequence - EST Expressed sequence tag - GB Granule-bound - Glc Glucose - SS Starch synthase  相似文献   

4.
Genes in the odd-skipped (odd) family encode a discrete subset of C2H2 zinc finger proteins that are widely distributed among metazoan phyla. Although the initial member (odd) was identified as a Drosophila pair-rule gene, various homologs are expressed within each of the three germ layers in complex patterns that suggest roles in many pathways beyond segmentation. To further investigate the evolutionary history and extant functions of genes in this family, we have initiated a characterization of two homologs, odd-1 and odd-2, identified in the genome of the nematode, Caenorhabditis elegans. Sequence comparisons with homologs from insects (Drosophila and Anopheles) and mammals suggest that two paralogs were present within an ancestral metazoan; additional insect paralogs and both extant mammalian genes likely resulted from gene duplications that occurred after the split between the arthropods and chordates. Analyses of gene function using RNAi indicate that odd-1 and odd-2 play essential and distinct roles during gut development. Specific expression of both genes in the developing intestine and other cells in the vicinity of the gut was shown using GFP-reporters. These results indicate primary functions for both genes that are most like those of the Drosophila paralogs bowel and drumstick, and support a model in which gut specification represents the ancestral role for genes in this family.Edited by C. Desplan  相似文献   

5.
The white-rot fungus Phanerochaete chrysosporium produces glucuronoyl esterase, a recently discovered carbohydrate esterase, during growth on sugar beet pulp. Two putative genes encoding this enzyme, ge1 and ge2, were isolated and cloned. Heterologous expression in Aspergillus vadensis, Pycnoporus cinnabarinus and Schizophyllum commune resulted in extracellular glucuronoyl esterase activity, demonstrating that these genes encode this enzymatic function. The amino acid sequence of GE1 was used to identify homologous genes in the genomes of twenty-four fungi. Approximately half of the genomes, both from ascomycetes and basidiomycetes, contained putative orthologues, but their presence could not be assigned to any of fungal class or subclass. Comparison of the amino acid sequences of identified and putative glucuronoyl esterases to other types of carbohydrate esterases (CE) confirmed that they form a separate family of CEs. These enzymes are interesting candidates for biotechnological applications such as the separation of lignin and hemicellulose.  相似文献   

6.
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.H. Fedders and R. Augustin contributed equally to this workEdited by D. Tautz  相似文献   

7.
8.
9.
10.
Recently, we identified and characterized the genes encoding several distinct members of the histidine-acid phosphatase enzyme family from Leishmania donovani, a primitive protozoan pathogen of humans. These included genes encoding the heavily phosphorylated/glycosylated, tartrate-sensitive, secretory acid phosphatases (Ld SAcP-1 and Ld SAcP-2) and the unique, tartrate-resistant, externally-oriented, surface membrane-bound acid phosphatase (Ld MAcP) of this parasite. It had been previously suggested that these enzymes may play essential roles in the growth, development and survival of this organism. In this report, to further examine this hypothesis, we assessed whether members of the L. donovani histidine-acid phosphatase enzyme family were conserved amongst other pathogenic Leishmania and related trypanosomatid parasites. Such phylogenetic conservation would clearly indicate an evolutionary selection for this family of enzymes and strongly suggest and support an important functional role for acid phosphatases to the survival of these parasites. Results of pulsed field gel electrophoresis and Southern blotting showed that homologs of both the Ld SAcPs and Ld MAcP were present in each of the visceral and cutaneous Leishmania species examined (i.e. isolates of L. donovani, L. infantum,L. tropica, L. major and L. mexicana, respectively). Further, results of enzyme assays showed that all of these organisms expressed both tartrate-sensitive and tartrate-resistant acid phosphatase activities. In addition, homologs of both the Ld SAcPs and Ld MAcP genes and their corresponding enzyme activities were also identified in two Crithidia species (C. fasciculata and C. luciliae) and in Leptomonas seymouri. In contrast, Trypanosoma brucei, Trypanosoma cruzi and Phytomonas serpens had only very low levels of such enzyme activities. Cumulatively, results of this study showed that homologs of the Ld SAcPs and Ld MAcP are conserved amongst all pathogenic Leishmania sps. suggesting that they may play significant functional roles in the growth, development and survival of all members of this important group of human pathogens.  相似文献   

11.
12.
A perennial ryegrass cDNA clone encoding a putative glycine-rich RNA binding protein (LpGRP1) was isolated from a cDNA library constructed from crown tissues of cold-treated plants. The deduced polypeptide sequence consists of 107 amino acids with a single N-terminal RNA recognition motif (RRM) and a single C-terminal glycine-rich domain. The sequence showed extensive homology to glycine-rich RNA binding proteins previously identified in other plant species. LpGRP1-specific genomic DNA sequence was isolated by an inverse PCR amplification. A single intron which shows conserved locations in plant genes was detected between the sequence motifs encoding RNP-1 and RNP-2 consensus protein domains. A significant increase in the mRNA level of LpGRP1 was detected in root, crown and leaf tissues during the treatment of plants at 4°C, through which freezing tolerance is attained. The increase in the mRNA level was prominent at least 2 h after the commencement of the cold treatment, and persisted for at least 1 week. Changes in mRNA level induced by cold treatment were more obvious than those due to treatments with abscisic acid (ABA) and drought. The LpGRP1 protein was found to localise in the nucleus in onion epidermal cells, suggesting that it may be involved in pre-mRNA processing. The LpGRP1 gene locus was mapped to linkage group 2. Possible roles for the LpGRP1 protein in adaptation to cold environments are discussed.  相似文献   

13.
14.
Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (IdhL andIdhD) encoding the L-(+) and D-(−) lactate dehydrogenases (L-LDH and D-LDH) were cloned fromLactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames ofIdhL for andIdhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(−)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes ofLactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.  相似文献   

15.
植物特异性转录因子NAM家族从属于NAC转录因子超家族,在植株生长发育、生理代谢以及应对各种胁迫反应中均发挥重要作用。该研究采用生物信息学方法鉴定水稻基因组中的NAM基因,分析其时空表达模式、亚细胞定位以及蛋白相互作用,并采用实时定量qRT PCR方法分析不同外源激素(如SA、ABA和MeJA)以及非生物胁迫(包括干旱、盐和冷)处理下各NAM基因的表达特征,为进一步探索NAM基因在非生物胁迫中的功能和应激机制以及激素调控途径奠定基础。结果显示:(1)从水稻基因组中共鉴定出48个NAM基因,进化分析将其分为5个亚家族;NAM基因在水稻基因组中存在9对片段复制事件。(2)组织表达分析显示,NAM基因在水稻不同组织及发育时期表现特异性表达,特别是叶鞘、茎和节的生长过程中高表达,且大多数是核定位,并存在多种蛋白互作。(3)实时定量qRT PCR表达分析显示,10个NAM基因在不同组织中均特异表达;大部分NAM基因在盐和干旱胁迫下表达上调,而在冷胁迫下表达降低;SA、ABA和MeJA处理均可显著改变各NAM基因的表达水平。研究表明,NAM基因在水稻生长发育、激素应答和非生物胁迫响应中具有重要作用。  相似文献   

16.
SGT1(suppressor of the G2 allele of skpl)是多种植物抗病基因介导的抗病信号途径中的重要元件.该研究利用RT-PCR和RACE方法克隆出甘薯近缘野生种三浅裂野牵牛的SGT1基因,命名为ItSGT1.该基因含有一个长度为1 087 bp的开放阅读框,编码361个氨基酸,分子量约为40.1 kD,等电点为5.05.Blast及多序列比对分析表明,该基因与其他植物中的SGT1具有较高的相似性,且具有SGT1蛋白典型的功能域结构,即TPR区、VR1区、CS区、VR2区和SGS区.Southern杂交结果显示,SGT1基因在三浅裂野牵牛基因组中是多拷贝基因.组织特异性表达分析表明,ItSGT1基因在三浅裂野牵牛的根、茎和叶中均有表达.  相似文献   

17.
18.
Promoters of the genesG3P, ICL1, POT1, POX1, POX2 andPOX5 of the yeastY. lipolytica were studied in respect to their regulations and activities during growth on different carbon sources. The aim of this study was to select suitable promoters for high expression of heterologous genes in this yeast. For this purpose the promoters were fused with the reporter genelacZ ofE. coli and integrated as single copies into the genome ofY. lipolytica strain PO1d. The measurement of expressed activities of β-galactosidase revealed thatpICL1, pPOX2 andpPOT1 are the strongest regulable promoters available forY. lipolytica, at present.pPOX2 andpPOT4 were highly induced during growth on oleic acid and were completely repressed by glucose and glycerol.pICL1 was strongly inducible by ethanol besides alkanes and fatty acids, however, not completely repressible by glucose or glycerol. Ricinoleic acid methyl ester appeared as a very strong inducer forpPOT1 andpPOX2, in spite of that it inhibited growth ofY. lipolytica transformants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号