首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为了研究角茴香的开花物候特征及其对生殖成功的影响,于2015年对其自然种群各水平的开花物候指数、开花过程中的花部特征变化和结实特性进行了观察和统计。结果表明:(1)角茴香种群花期为4月下旬至5月下旬,种群水平的花期持续时间为36 d。(2)单花具有独特的花瓣结构,其内层花瓣由白色的侧裂片和黄色的兜状中裂片构成,中裂片是角茴香植物花粉二次呈现的关键功能器官;开花进程依其外层花瓣开裂大小可分为4个阶段,即外层花瓣顶端未张口、外层花瓣顶端张口5~7 mm、外层花瓣顶端张口12~14 mm和外层花瓣顶端张口3~5 mm。(3)花序水平的开花振幅曲线呈渐进式单峰曲线,开花同步指数为0.748,个体水平表现出较高的相对开花强度,其分布频度的偏斜率为0.45,主要频度范围分别集中在20%~30%和50%~70%之间。(4)花序水平的始花日期与花期持续时间存在显著负相关关系,开花数与座果数存在显著正相关关系。(5)自然状态下,角茴香结实率和结籽率分别是82.7%±0.1%和93.6%±0.8%。角茴香开花强度分布频度上出现的高、低强度的分异趋势是吸引传粉者、促进结实的有效生殖对策。  相似文献   

2.
于2004年薇甘菊(Mikania micrantha)生殖阶段的现蕾期至种子成熟期,从种群和构件水平上研究了两种生境(林窗和开阔地)中薇甘菊种群的生物量生殖分配。结果表明,在生殖生长过程中,两种生境中的种群用于营养生长的生物量分配均占有绝对优势,而生殖生长的波动相对较大。花序的生物量分配(RA)总体上均呈现由低到高的变化趋势。在不同时期,林窗薇甘菊种群的营养枝生物量分配均小于开阔地,而除了种子形成期和种子成熟期以外的其它各个时期,林窗中生殖枝的生物量分配均大于开阔地,林窗中花序的生物量分配均显著大于开阔地。表明薇甘菊能有效权衡其在不同生境中的繁殖策略,开阔地中的薇甘菊种群的繁殖策略倾向于克隆繁殖,而林窗生境中薇甘菊种群则相对更倾向于有性生殖。  相似文献   

3.
野生扁穗牛鞭草无性系构件组成及生物量结构变异性   总被引:6,自引:0,他引:6  
刘金平  张新全  游明鸿  陈永霞  王讯 《生态学报》2006,26(11):3656-3660
对60份野生扁穗牛鞭草的无性系种群构件数量、质量性状及生物量结构进行比较分析,结果说明:不同种群构件性状与数量呈现出变异性,叶长、叶宽、单蘖叶片数、无性系叶片数的变异系数分别为24.95%、20.00%、14.12%、43.56%;茎直径、节直径、节间长、单蘖节数、直立茎长度、匍匐茎长度、直立茎数、匍匐茎数的变异系数分别为21.11%、22.42%、20.10%、12.14%、46.73%、20.14%、72.76%、37.97%;根系深度、根系分布范围、分蘖面积的变异系数分别为19.81%、37.65%、33.68%;花序长、花序宽、花序厚、单蘖花序数、直立茎生殖蘖比例、匍匐茎生殖蘖比例的变异系数分别为13.33%、13.42%、14.80%、36.10%、118.96%、81.44%。不同种群构件生物量结构变异性丰富,叶生物量、茎生物量、根生物量、花序生物量变异系数分别为78.51%、91.66%、45.64%、192.24%;构件的数量差异高于性状差异,无性系种群差异主要体现在分蘖能力与空间拓展能力上。野生资源生态型变异性和对环境的适应性,为优异性状选择、品种选育、资源开发利用提供了丰富的物质基础。  相似文献   

4.
焦德志  钟露朋  张艳馥  潘林  杨允菲 《生态学报》2022,42(15):6103-6110
不同环境条件下的植物个体可以表现出形态特征的分异和物质分配的权衡与调整。采用大样本抽样调查与统计分析方法,比较研究扎龙湿地不同生境芦苇(Phragmites Australis)生殖株和营养株的形态特征以及生物量分配的异速关系。结果表明:在9月末,盐碱生境、旱生生境、湿生生境和水生生境芦苇分株的生长表现出较大的生态可塑性,株高和株重均以盐碱生境最小,水生生境最大,最大值与最小值的比值分别为1.3—3.3和1.8—5.1,分株生长在种群间的变异度高于种群内,与营养株相比,生殖株的变异度较低;分株的支持分配与生产分配的比值为1.8—4.2,生产分配以盐碱生境最高,以水生生境最低,而支持分配和生殖分配表现与生产分配相反的序位;生殖株的花序长和花序重与株高间呈直线函数形式增长,株高和株重低于种群平均值的20%和35%的分株不进行有性生殖;叶重、叶鞘和茎重以及分株重与株高间呈幂函数形式的异速生长关系。植物通过改变个体的形态特征以及调整构件间生物量分配适应不同环境,而受遗传因素控制的构件间生长关系却相对稳定。  相似文献   

5.
为了了解人工栽培条件下象草分株构件生物量及其分配的动态变化规律,以华南象草(Pennisetum purpureum cv.Huanan)为材料,分别在2009年6月和12月,对其分株构件生物量数据进行了测量分析.结果表明:在分株生长过程中,叶片生物量呈线性增长,相关性模型确定系数R2为0.209 ~0.784;茎秆生物量呈线性或幂函数规律增长,相关性模型确定系数较高,R2为0.687 ~0.989,茎秆生物量增长规律更为稳定.随着分株总生物量的增长,营养生长期叶片生物量增长速率是生殖生长期的3.39倍;而生殖生长期茎秆生物量增长速率是营养生长期的1.13倍.枯叶生物量在生殖生长期有着较为稳定的线性增长规律,相关性模型确定系数R2为0.471 ~0.676.花序生物量相关性模型均未达显著水平(P>0.05),花序生物量分配率呈幂值为-1.037的幂函数降低规律.在生殖生长期,叶片和茎秆生物量分配率呈现幂值分别为-0.387和0.093的幂函数变化规律.  相似文献   

6.
羊草种群生物量生殖分配的初步研究   总被引:27,自引:5,他引:22  
对羊草种群生物量生殖分配的研究表明,在生殖生长过程中,种群用于根茎和营养生长的生物量生殖分配占有绝对优势比例,而用于有性生殖的生物量生殖分配比例较小,在10%以下。在羊草种群构件生物量生殖分配中,根茎和营养枝的叶占有较大比例(20%~40%),而用于有性繁殖体种子生产的比例很小,在1.5%以下。对有性繁殖的小比例投资是导致羊草种群有性繁殖体种子产量低的重要原因.  相似文献   

7.
葎草雌雄植株开花物候和花器官对干旱的响应差异   总被引:1,自引:0,他引:1  
摘要:以蓓草(Humulusscandens)为实验材料,在控制土壤水分的条件下探究干旱对雌雄异株植物开花物候和花器官形态的影响,结果表明:干旱胁迫将导致蓰草雌雄种群花期提前.花期持续时间延长,雌花将比雄花提早开放;干旱胁迫下雄花的花序轴长、花序轴直径和花药粒径长均分别显著减小24.81%。29.07%和5.14%(P〈0.001,P=0.003,P=0.024),花粉活力和花粉含量显著下降:干旱胁迫导致雌花的花序轴长、柱头长度和花序的平均花数量显著增大9.78%,70.62%和57.04%(P=0.039.P〈0.001.P〈0.001);干旱胁迫下种子粒径长、种子粒径宽、种子单粒重和种子千粒重分别显著下降12.12%、12.59%、43.43%和15.38%(显著度水平均为P〈0.001);干旱胁迫下雌雄植株的地上部分生物量均显著降低(P=0.002,P=0.020),且雌株的生殖投入在干旱胁迫下显著高于雄株(P=0.049)。研究结果表明了蓰草雌雄植株开花物候及花器官对干旱的响应明显不同。与雄株相比.雌株在干旱胁迫下增加了生物量向生殖器官的分配,从而最大程度地减轻胁迫对其繁殖能力的影响。  相似文献   

8.
采用形态学标记的方法,对来源于内蒙古7个不同生态区的49份扁蓿豆(Medicago ruthenica L.)野生材料进行了花性状变异分析。对花萼长、花萼直径等12个性状进行系统调查和遗传多样性分析。结果表明:扁蓿豆材料间花性状的变异系数幅度最大的为花序长,其变异系数高达79.12%,变异幅度最小的为花萼直径, 其变异系数为3.82%;主成分分析表明,花性状中前7个主成分反应了总信息量的85.465%, 花序长、花序轴长、花冠长度、花序结荚数、花序种子数、花色和小花柄长等7个性状是造成扁蓿豆花性状变异的主要因素;相关分析表明,花性状间多数呈差异显著或极显著,例如:花序结荚数与花序种子数差异极显著,为0.811,呈显著正相关,而花序轴长和小花柄长差异极显著,呈显著负相关,为-0.340;聚类分析将49份材料分为6类, 花性状变异性相同或地理来源相同与相近的材料大部分聚在一起。说明:扁蓿豆材料间的花性状具有丰富的遗传多样性  相似文献   

9.
采用野外生态学实验方法对狗尾草属狗尾草和金色狗尾草种群生殖分株组分生物量结构及生长情况进行了比较。结果表明:在种内2物种生殖分株组分生物量具有较大的变异特征;组分生物量分配变异系数较小,分别为11.11%~22.77%和12.41%~26.82%;生殖分株营养组分生物量随株高和总生物量增加而均呈现幂函数形式增长,表现为相似的异速生长规律;其中,狗尾草全体拟合方程的R2值在55%~71%,金色狗尾草为62%~81%;在种间,生殖分株各组分除株高存在显著差异外,其余均不显著;生物量分配中,生殖分配和鞘生物量分配呈极显著差异。研究表明,狗尾草属2物种生殖分株在相同生存环境下,组分生物量和生长情况在种内和种间会同时受随机环境因子和自身遗传因子的内外调控,而表现出一定异同点。  相似文献   

10.
钻形紫菀开花期种群构件的生物量分配   总被引:6,自引:1,他引:5  
在野外用样方法,选取60株钻形紫菀(Aster subulatus Michx.)开花植株,进行根、茎、叶及花等构件的生物量及其物质分配关系的研究.结果表明:钻形紫菀开花期构件生物量为茎>花>根>叶,其变异系数分别为57.15%、64.66%、57.65%和55.2%,具有较大表型可塑性;在各构件物质分配变异系数中,花生物量分配的变异系数相对较大,说明其调节生殖分配的能力较强;植株高度与各构件生物量呈显著的正相关性,随着各构件生物量的增加均呈幂函数形式增加;花生物量分配与总生物量呈显著的正相关性,其余构件生物量分配均与总生物量及花生物量分配呈负相关性,物质分配由营养构件、支持构件、光合构件向生殖构件转移.反映出钻形紫菀具有自我调节生长力的分配策略,对异质环境具有较强适应能力.  相似文献   

11.
12.
13.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

14.
15.
16.
17.
18.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号