首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

2.
Makareeva E  Leikin S 《PloS one》2007,2(10):e1029
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.  相似文献   

3.
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.  相似文献   

4.
Summary We have screened type I procollagen synthesized in vitro by skin fibroblasts from several patients with the severe non-lethal form of osteogenesis imperfecta. Cells from one patient synthesized and secreted both normal and a larger amount of abnormal type I procollagen. The abnormal alpha chains are larger in size due to post-translational overmodifications involving the whole triple helical domain. Abnormal collagen heterotrimers had a melting temperature 2.5°–3°C lower than normal ones or from controls. Chemical analysis of collagen in the medium showed a greater degree of both lysyl hydroxylation and hydroxylysyl glycosylation, the major increase in molecular mass of overmodified alpha chains being due to the higher hydroxylysine-bound hexose content. The proband's cells modify proteoglycan metabolism and mineral proband's cells modify proteoglycan metabolism and mineral crystals form in the dermis, possibly a response to abnormal collagen-proteoglycan interactions. These findings can be explained by a small defect in the product of one allele for pro-1(I) chains: three-quarters of the synthesized type I procollagen molecules are composed of trimers containing one or two chains defective near the C-terminus of the triple helix or in the C-propeptide. The data obtained for this patient confirmed that the severity of clinical manifestations in osteogenesis imperfecta strongly depends on the location and nature of the mutations, and that the phenotype could be a consequence of a collagen defect(s) and its influence on collagen-collagen interactions and collagen interactions with other connective tissue components.  相似文献   

5.
A case of severe non-lethal Osteogenesis imperfecta was studied. The patient's cultured skin fibroblasts synthesised a mixed population of type I collagen chains some of which showed abnormal behaviour on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Further analysis revealed that two types of alpha 1(I) chains were synthesised, both an abnormal, slower migrating and a normal species. A small defect in one allele of one of the type I procollagen chains could lead to the larger size of the abnormal chains, probably caused by overmodifications of the triple helical region. CNBr peptide mapping allowed us to localise the defect midway along the triple helix: the defect site could be assigned to the region between the alpha 1(I)CB-3 and CB-7 peptides. The abnormal alpha 1(I) chains synthesised by the patient's cells had a melting temperature which was about 2 degrees C lower than normal chains. The results appear to be in agreement with the defect localisation and the phenotype.  相似文献   

6.
Tasab M  Batten MR  Bulleid NJ 《The EMBO journal》2000,19(10):2204-2211
Hsp47 is a heat-shock protein that interacts transiently with procollagen during its folding, assembly and transport from the endoplasmic reticulum (ER) of mammalian cells. It has been suggested to carry out a diverse range of functions, such as acting as a molecular chaperone facilitating the folding and assembly of procollagen molecules, retaining unfolded molecules within the ER, and assisting the transport of correctly folded molecules from the ER to the Golgi apparatus. Here we define the substrate recognition of Hsp47, demonstrating that it interacts preferentially with triple-helical procollagen molecules. The association of Hsp47 with procollagen coincides with the formation of a collagen triple helix. This demonstrates that Hsp47's role in procollagen folding and assembly is distinct from that of prolyl 4-hydroxylase. These results indicate that Hsp47 acts as a novel molecular chaperone, potentially stabilizing the correctly folded collagen helix from heat denaturation before its transport from the ER.  相似文献   

7.
We have studied a patient with severe, dominantly inherited Ehlers-Danlos syndrome type IV. The results indicate that this patient carries a deletion of 3.3 kilo-base pairs in the triple helical coding domain of one of the two alleles for the pro-alpha-chains of type III collagen (COL3A1). His cultured skin fibroblasts contain equal amounts of normal length mRNA and of mRNA shortened by approximately 600 bases, and synthesize both normal and shortened pro-alpha 1(III)-chains. In procollagen molecules containing one or more shortened chains, a triple helix is formed with a length of only about 780 amino acids. The mutant procollagen molecules have decreased thermal stability, are less efficiently secreted, and are not processed as their normal counterpart. The deletion in this family is the first mutation to be described in COL3A1.  相似文献   

8.
We have identified an infant with the perinatal lethal form of osteogenesis imperfecta (type II) whose cells synthesize in equal amounts two different pro alpha 1(I) chains of type I procollagen: one chain is normal in length, the other contains an insertion of approximately 50-70 amino acid residues within the triple helical domain defined by amino acids 123-220. The structure of the insertion is consistent with duplication of an approximately 600-base pair segment in one allele of the alpha 1(I) gene (COL1A1). These cells synthesize normal type I procollagen molecules as well as molecules that contain one or two mutant chains. Unlike type I procollagen molecules synthesized by cells from most other infants with osteogenesis imperfecta type II which contain increased lysyl hydroxylation and hydroxylysyl glycosylation along the triple helical domain, the abnormal molecules synthesized by these cells are not overmodified. The lethal effect of this mutation may result from secretion of about one-quarter the normal amount of normal type I procollagen and secretion of a large amount of a molecule which has a lowered melting temperature, is extended asymmetrically, and which has altered structure in domains important for cross-link formation and bone mineralization.  相似文献   

9.
Collagen is the most abundant protein of mammals and produces highly organized ultrastructures in the extracellular matrix. There are at least 27 types of collagen in mammalian tissues. While fibrillar collagen (eg. types I, II, III, V and XI) assembles into large fibril structures in the extracellular matrix, type IV collagen produces meshwork-like structures in the basement membranes. As collagen has a distinct triple helix structure composed of Gly-X-Y repeats whose Y position is often hydroxyproline, its folding and maturation process differs considerably from globular proteins. Type I collagen is an assembly of two alpha-1 chains and one alpha-2 chain, and each of the alpha chains contain the N-terminal propeptide, C-terminal propeptide and central triple helical region. The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum (ER)-resident molecular chaperone that specifically recognizes the triple helical region of collagen and is required for productive folding and maturation of collagen molecules. Only in the presence of HSP47, collagen type I molecules can be assembled into the correctly folded triple helices in the ER of mouse embryos without producing misfolded or non-functionally aggregated molecules. HSP47-knockout embryos die just after 10.5 day due to the absence of functional collagen. Recent our data demonstrated that the non-fibrillar network-forming collagen type IV also requires HSP47 for productive folding and maturation. Here, we discuss the role of HSP47 in the folding and maturation of collagen type IV as well as type I.  相似文献   

10.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

11.
Dermal fibroblasts from a fetus with perinatal lethal osteogenesis imperfecta synthesized normal and abnormal type I procollagen molecules. The abnormal molecules contained one or two pro alpha 1(I) chains in which glycine, alanine, and hydroxyproline at positions 874, 875, and 876 in the triple-helical region were deleted as the result of a 9-base pair genomic deletion. Molecules that contained abnormal chains were overmodified from the site of the deletion toward the amino-terminal region of the molecule. Secretion of the overmodified molecules was impaired. The thermal stability of molecules containing abnormal chains was lower than that of normally modified molecules. After cleavage of molecules with vertebrate collagenase, the temperature of thermal denaturation of the overmodified A fragments was greater than that of the fragments from the normal molecules. The rates of cleavage of the normal and the abnormal molecules by N-proteinase were indistinguishable. Our findings suggest that the tripeptide deletion introduces a shift in the phase of the chains in the triple helix. This structural change is propagated from the site of the deletion toward the amino terminus of the molecule, but the subsequent alteration in the structure of the N-proteinase cleavage site is not sufficient to cause a decrease in the rate of cleavage by the enzyme.  相似文献   

12.
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ± PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.  相似文献   

13.
To investigate the molecular mechanism of intracellular degradation of type I collagen in normal corneal endothelial cells (CEC), we studied the role of prolyl 4-hydroxylase (P4-H) and protein disulfide-isomerase (PDI; the beta subunit of P4-H) during procollagen I biosynthesis. When the subcellular localization of P4-H and PDI was determined, P4-H demonstrated a characteristic diffuse endoplasmic reticulum (ER) pattern, whereas PDI showed a slightly more restricted distribution within the ER. When colocalization of procollagen I with the enzymes was examined, procollagen I and PDI showed a large degree of colocalization. P4-H and procollagen I were predominantly colocalized at the perinuclear site. When colocalization of type IV collagen with PDI and P4-H was examined, type IV collagen was largely colocalized with PDI, which showed a wider distribution than type IV collagen. Type IV collagen is similarly colocalized with P4-H, except in some perinuclear sites. The colocalization profiles of procollagen I with both PDI and P4-H were not altered in cells treated with alpha,alpha'-dipyridyl compared to those of the untreated cells. The underhydroxylated type IV collagen demonstrated a colocalization profile with PDI similar to that observed with procollagen I, while the underhydroxylated type IV collagen was predominantly colocalized with P4-H at the perinuclear sites. Immunoblot analysis showed no real differences in the amounts of the beta subunit/PDI and the catalytic alpha subunit of P4-H in CEC compared to those of corneal stromal fibroblasts (CSF). When protein-protein association was determined, procollagen I was associated with PDI much more in CEC than it was in CSF, whereas type IV collagen showed no differential association specificity to PDI in both cells. Limited proteolysis of the newly synthesized intracellular procollagen I with pepsin showed that procollagen I in CEC was degraded by pepsin, whereas CSF contained type I collagen composed of alpha1(I) and alpha2(I). These findings suggest that procollagen I synthesized in CEC is not in triple helical conformation and that the improperly folded procollagen I may be preferentially associated with PDI before targeting to the intracellular degradation.  相似文献   

14.
The expression of stable recombinant human collagen requires an expression system capable of post-translational modifications and assembly of the procollagen polypeptides. Two genes were expressed in the yeast Saccharomyces cerevisiae to produce both propeptide chains that constitute human type I procollagen. Two additional genes were expressed coding for the subunits of prolyl hydroxylase, an enzyme that post-translationally modifies procollagen and that confers heat (thermal) stability to the triple helical conformation of the collagen molecule. Type I procollagen was produced as a stable heterotrimeric helix similar to type I procollagen produced in tissue culture. A key requirement for glutamate was identified as a medium supplement to obtain high expression levels of type I procollagen as heat-stable heterotrimers in Saccharomyces. Expression of these four genes was sufficient for correct assembly and processing of type I procollagen in a eucaryotic system that does not produce collagen.  相似文献   

15.
Dermal fibroblasts from a fetus with perinatal lethal OI synthesized normal and abnormal type I procollagen molecules. The abnormal molecules contained one or two pro alpha 1 (I) chains in which glycine at position 847 in the triple helical region was substituted by arginine as the result of a de novo G-to-A transition in the first base of the glycine codon. The substitution resulted in increased posttranslational modification amino-terminal of the mutation site of all chains in molecules that contained one or more abnormal chains. Secretion of the overmodified molecules was impaired, and intracellular retention of molecules which contained two abnormal chains was greater than that of molecules which contained one abnormal chain. The thermal stability of molecules that contained two abnormal chains was markedly lower than that of molecules containing one abnormal chain. After cleavage of molecules with vertebrate collagenase, the thermal stability of the overmodified A fragments was greater than that of the normal molecules. Our findings indicate that the cell distinguishes three classes of molecules and suggest that these molecules differ depending on the number of abnormal chains in the trimer.  相似文献   

16.
It was recently reported that co-expression of the proalpha1(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 16, 6702-6712). These properly folded molecules accumulated inside the yeast cell, however, only approximately 10% were found in the culture medium. We report here that replacement of the authentic signal sequence of the human proalpha1(III) with the Saccharomyces cerevisiae alpha mating factor prepro sequence led only to a minor increase in the amount secreted. Immunoelectron microscopy studies indicated that the procollagen molecules accumulate in specific membranous vesicular compartments that are closely associated with the nuclear membrane. Prolyl 4-hydroxylase, an endoplasmic reticulum (ER) lumenal enzyme, was found to be located in the same compartments. Non-helical proalpha1(III) chains produced by expression without recombinant prolyl 4-hydroxylase likewise accumulated within these compartments. The data indicate that properly folded recombinant procollagen molecules accumulate within the ER and do not proceed further in the secretory pathway. This may be related to the large size of the procollagen molecule.  相似文献   

17.
We have characterized a deletion of approximately 9 kilobases which spans from intron 33 to exon 48 of one pro-alpha 1 (III) collagen allele in a patient with Ehlers-Danlos syndrome type IV. The mutation results in the production of an in-frame species of mRNA which lacks the sequences corresponding to residues 595-1,008 of the triple-helical domain. Thus, half of the pro-alpha 1 (III) chains synthesized by the patient's fibroblasts are nearly 30% shorter than normal. The procollagen III molecules composed of either three normal length or three shortened chains are thermally stable and efficiently secreted. In contrast, the procollagen III molecules that contain one or two shortened chains are unstable and are not secreted. Failure to secrete unstable molecules and a residual functional role of the shortened but stable homotrimers may explain the somewhat milder phenotype of this individual compared with that of another Ehlers-Danlos type IV patient bearing a deletion of similar size in the amino-terminal portion of the alpha 1 (III) collagen chain.  相似文献   

18.
A general mechanism for the assembly of procollagens is proposed from a biosynthetic study of procollagen III. This was shown to proceed by a stepwise process punctuated by disulfide bond formation and an assembly intermediate was recovered. The biosynthesis of type III procollagen in excised chick embryo blood vessels was studied by radioactive labeling for 30 min. Velocity sedimentation under denaturing conditions and purified antibodies specific against bovine amino propeptide III were used to identify and characterize monomeric pro alpha 1 III chains and a type III procollagen intermediate which is interchain disulfide-linked only at the carboxyl end but not at the amino end. The monomeric chains presumably have intrachain disulfide bonds within the propeptides. The monomeric pro alpha 1 III chains were also found when alpha, alpha'-dipyridyl was present during incubation. Pulse-chase experiments show that the monomeric chains and the intermediate are biosynthetic precursors of type III procollagen. Furthermore, it is shown that monomeric pro alpha 1 chains are not triple helical when extracted under nondenaturing conditions. The results indicate that the assembly of pro alpha 1 III chains into type III procollagen starts with the association of the folded carboxyl propeptides and is followed by formation of disulfide bonds between carboxyl propeptides, folding of the triple helix, and formation of disulfide bonds between amino propeptides. All procollagens may follow a similar assembly sequence.  相似文献   

19.
A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of prepro alpha 1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated pro alpha 1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn1187, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant pro alpha 1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with over-hydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).  相似文献   

20.
Mutations in collagen genes: causes of rare and some common diseases in humans   总被引:48,自引:0,他引:48  
More than 70 mutations in the two structural genes for type I procollagen (COL1A1 and COL1A2) have been found in probands with osteogenesis imperfecta, a heritable disease of children characterized by fragility of bone and other tissues rich in type I collagen. The mutations include deletions, insertions, RNA splicing mutations, and single-base substitutions that convert a codon for glycine to a codon for an amino acid with a bulkier side chain. With a few exceptions, the most severe phenotypes of the disease are explained largely by synthesis of structurally defective pro alpha chains of type I procollagen that either interfere with the folding of the triple helix or with self-assembly of collagen into fibrils. The results emphasize the extent to which the zipperlike folding of the collagen triple helix and the self-assembly of collagen fibrils depend on the principle of nucleated growth whereby a few subunits form a nucleus and the nucleus is then propagated to generate a large structure with a precisely defined architecture. The principle of nucleated growth is a highly efficient mechanism for the assembly of large structures, but biological systems that depend extensively on nucleated growth are highly vulnerable to mutations that cause synthesis of structurally abnormal but partially functional subunits. Recently, several mutations in three other collagen genes (COL2A1, COL3A1, and COL4A5) have been found in probands with genetic diseases involving tissues rich in these collagens. Most of the probands have rare genetic diseases but a few appear to have phenotypes that are difficult to distinguish from more common disorders such as osteoarthritis, osteoporosis, and aortic aneurysms. Therefore, the results suggest that mutations in procollagen genes may cause a wide spectrum of both rare and common human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号