首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bloom's syndrome (BS) is an autosomal disorder characterized by predisposition to a wide variety of cancers. The gene product whose mutation leads to BS is the RecQ family helicase BLM, which forms a complex with DNA topoisomerase IIIalpha (Top3alpha). However, the physiological relevance of the interaction between BLM and Top3alpha within the cell remains unclear. We show here that Top3alpha depletion causes accumulation of cells in G2 phase, enlargement of nuclei, and chromosome gaps and breaks that occur at the same position in sister chromatids. The transition from metaphase to anaphase is also inhibited. All of these phenomena except cell lethality are suppressed by BLM gene disruption. Taken together with the biochemical properties of BLM and Top3alpha, these data indicate that BLM and Top3alpha execute the dissolution of sister chromatids.  相似文献   

2.
BLM, the protein mutated in Bloom's syndrome, possesses a helicase activity that can dissociate DNA structures, including the Holliday junction, expected to arise during homologous recombination. BLM is stably associated with topoisomerase IIIalpha (Topo IIIalpha) and the BLAP75 protein. The BLM-Topo IIIalpha-BLAP75 (BTB) complex can efficiently resolve a DNA substrate that harbors two Holliday junctions (the double Holliday junction) in a non-crossover manner. Here we show that the Holliday junction unwinding activity of BLM is greatly enhanced as a result of its association with Topo IIIalpha and BLAP75. Enhancement of this BLM activity requires both Topo IIIalpha and BLAP75. Importantly, Topo IIIalpha cannot be substituted by Escherichia coli Top3, and the Holliday junction unwinding activity of BLM-related helicases WRN and RecQ is likewise impervious to Topo IIIalpha and BLAP75. However, the topoisomerase activity of Topo IIIalpha is dispensable for the enhancement of the DNA unwinding reaction. We have also ascertained the requirement for the BLM ATPase activity in double Holliday junction dissolution and DNA unwinding by constructing, purifying, and characterizing specific mutant variants that lack this activity. These results provide valuable information concerning how the functional integrity of the BTB complex is governed by specific protein-protein interactions among the components of this complex and the enzymatic activities of BLM and Topo IIIalpha.  相似文献   

3.
Topoisomerase I-associated DNA single-strand breaks selectively trapped by camptothecins are lethal after being converted to double-strand breaks by replication fork collisions. BLM (Bloom's syndrome protein), a RecQ DNA helicase, and topoisomerase IIIalpha (Top3alpha) appear essential for the resolution of stalled replication forks (Holliday junctions). We investigated the involvement of BLM in the signaling response to Top1-mediated replication DNA damage. In BLM-complemented cells, BLM colocalized with promyelocytic leukemia protein (PML) nuclear bodies and Top3alpha. Fibroblasts without BLM showed an increased sensitivity to camptothecin, enhanced formation of Top1-DNA complexes, and delayed histone H2AX phosphorylation (gamma-H2AX). Camptothecin also induced nuclear relocalization of BLM, Top3alpha, and PML protein and replication-dependent phosphorylation of BLM on threonine 99 (T99p-BLM). T99p-BLM was also observed following replication stress induced by hydroxyurea. Ataxia telangiectasia mutated (ATM) protein and AT- and Rad9-related protein kinases, but not DNA-dependent protein kinase, appeared to play a redundant role in phosphorylating BLM. Following camptothecin treatment, T99p-BLM colocalized with gamma-H2AX but not with Top3alpha or PML. Thus, BLM appears to dissociate from Top3alpha and PML following its phosphorylation and facilitates H2AX phosphorylation in response to replication double-strand breaks induced by Top1. A defect in gamma-H2AX signaling in response to unrepaired replication-mediated double-strand breaks might, at least in part, explain the camptothecin-sensitivity of BLM-deficient cells.  相似文献   

4.
Binding and activation of DNA topoisomerase III by the Rmi1 subunit   总被引:2,自引:0,他引:2  
Rmi1 is a conserved oligonucleotide and oligosaccharide binding-fold protein that is associated with RecQ DNA helicase complexes from humans (BLM-TOP3 alpha) and yeast (Sgs1-Top3). Although human RMI1 stimulates the dissolution activity of BLM-TOP3 alpha, its biochemical function is unknown. Here we examined the role of Rmi1 in the yeast complex. Consistent with the similarity of top3Delta and rmi1Delta phenotypes, we find that a stable Top3.Rmi1 complex can be isolated from yeast cells overexpressing these two subunits. Compared with Top3 alone, this complex displays increased superhelical relaxation activity. The isolated Rmi1 subunit also stimulates Top3 activity in reconstitution experiments. In both cases elevated temperatures are required for optimal relaxation unless the substrate contains a single-strand DNA (ssDNA) bubble. Interestingly, Rmi1 binds only weakly to ssDNA on its own, but it stimulates the ssDNA binding activity of Top3 5-fold. Top3 and Rmi1 also cooperate to bind the Sgs1 N terminus and promote its interaction with ssDNA. These results demonstrate that Top3-Rmi1 functions as a complex and suggest that Rmi1 stimulates Top3 by promoting its interaction with ssDNA.  相似文献   

5.
We have analysed the role of topoisomerase II (topo II) in plasmid DNA replication in Xenopus egg extracts, using specific inhibitors and two-dimensional gel electrophoresis of replication products. Topo II is dispensable for nuclear assembly and complete replication of plasmid DNA but is required for plasmid unlinking. Extensive unlinking can occur in the absence of mitosis. Replication intermediates generated in the absence of topo II activity have an increased positive superhelical stress (+DeltaLk), suggesting a deficiency in precatenane removal. The geometry of replication intermediates cut by poisoning topo II with etoposide and purified by virtue of their covalent attachment to topo II subunits demonstrates that topo II acts behind the forks at all stages of elongation. These results provide direct evidence for unlinking replicating DNA by precatenane removal and reveal a division of labour between topo I and topo II in this eukaryotic system. We discuss the role of chromatin structure in driving DNA unlinking during S phase.  相似文献   

6.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

7.
DNA topoisomerases I and II (topo I and II) are nuclear enzymes involved in cellular replication and are targets for several anticancer drugs. We showed previously that E1A gene transfer enhanced the sensitivity of Ewing's sarcoma cells to the topo IIalpha targeting agents etoposide and Adriamycin in vitro and in vivo. To determine whether this effect was specific for topo IIalpha, we investigated the effect of E1A gene transfer on cell sensitivity to agents that target topo I and IIbeta. Transfecting TC71 human Ewing's sarcoma cells with an adenoviral vector containing the E1A gene enhanced their sensitivity to the topo IIalpha targeting agents etoposide (16-fold) and Adriamycin (8-fold). By contrast, E1A gene transfer did not affect cellular sensitivity to either amsacrine or camptothecin. Western blot analysis indicated that topo IIalpha protein levels increased 3.1-fold after E1A gene transfer, but topo I and IIbeta protein levels did not change. A plasmid containing topo IIalpha gene promoter with luciferase reporter gene was constructed to determine the effects of E1A gene transfer on the activity of the topo IIalpha promoter. E1A increased the activity of the topo IIalpha gene promoter by 3.5-fold relative to that of cells transfected with Ad-beta-gal. These results suggest that elevated topo IIalpha protein levels and enhanced sensitivity to topo IIalpha targeting agents were secondary to a direct effect of E1A on the topo IIalpha promoter. Combining E1A gene therapy with topo IIalpha targeting anticancer drugs may therefore have therapeutic benefit by increasing tumor cell sensitivity.  相似文献   

8.
The entC and entA genes, coding for the enzymes isochorismate synthase and 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, respectively, were subcloned behind the T7 promoter in the expression plasmid pGEM3Z. Their protein products were overproduced and partially purified for in vitro analysis of the conversion of chorismate to isochorismate. Whereas previous genetic experiments suggested that the EntA enzyme has a role in this conversion, this study clearly indicates that EntC alone catalyzes the reaction. Addition of EntA had no effect on isochorismate synthase activity. As a result, the mutation (previously designated entC401) in strain AN191 was characterized by nucleotide sequence analysis. The lesion is a single base substitution in the entA gene, resulting in a glutamic acid-for-glycine substitution at the penultimate amino acid (residue 247) of the EntA enzyme. The mutant protein was partially purified and shown to be devoid of 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase activity, whereas the entC gene product from strain AN191 exhibited normal isochorismate synthase function. These results conflict with the earlier characterization of the entC401 mutation in a different genetic background. The data presented herein establish that the EntA protein does not contribute to isochorismate synthase activity and that the mutant strain that led to this suggestion harbors a defective allele of entA rather than entC.  相似文献   

9.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative (ALT) recombination mechanism. In yeast, Sgs1p and its associated type IA topoisomerase, Top3p, may work coordinately in removing Holliday junction intermediates from a crossover-producing recombination pathway. Previous studies have also indicated that Sgs1 helicase acts in a telomere recombination pathway. Here we show that topoisomerase III is involved in telomere-telomere recombination. The recovery of telomere recombination-dependent survivors in a telomerase-minus yeast strain was dependent on Top3p catalytic activity. Moreover, the RIF1 and RIF2 genes are required for the establishment of TOP3/SGS1-dependent telomere-telomere recombination. In human Saos-2 ALT cells, human topoisomerase IIIalpha (hTOP3alpha) also contributes to telomere recombination. Strikingly, the telomerase activity is clearly enhanced in surviving si-hTOP3alpha Saos-2 ALT cells. Altogether, the present results suggest a potential role for hTOP3alpha in dissociating telomeric structures in telomerase-deficient cells, providing therapeutic implications in human tumors.  相似文献   

10.
The Bloom's syndrome gene product interacts with topoisomerase III   总被引:1,自引:0,他引:1  
Bloom's syndrome is a rare genetic disorder associated with loss of genomic integrity and a large increase in the incidence of many types of cancer at an early age. The Bloom's syndrome gene product, BLM, belongs to the RecQ family of DNA helicases, which also includes the human Werner's and Rothmund-Thomson syndrome gene products and the Sgs1 protein of Saccharomyces cerevisiae. This family shows strong evolutionary conservation of protein structure and function. Previous studies have shown that Sgs1p interacts both physically and genetically with topoisomerase III. Here, we have investigated whether this interaction has been conserved in human cells. We show that BLM and hTOPO IIIalpha, one of two human topoisomerase III homologues, co-localize in the nucleus of human cells and can be co-immunoprecipitated from human cell extracts. Moreover, the purified BLM and hTOPO IIIalpha proteins are able to bind specifically to each other in vitro, indicating that the interaction is direct. We have mapped two independent domains on BLM that are important for mediating the interaction with hTOPO IIIalpha. Furthermore, through characterizing a genetic interaction between BLM and TOP3 in S. cerevisiae, we have identified a functional role for the hTOPO IIIalpha interaction domains in BLM.  相似文献   

11.
A synthetic single-chain porcine insulin precursor (PIP) gene and an α-mating factor leader sequence (αMFL) gene obtained by the PCR method are inserted between the promoter and 3'-terminating sequence of the alcohol dehydrogenase gene ADH1 in plasmid pVT102-U to form plasmid pVT102-U/α MFL-PIP. The single-chain insulin precursor is expressed and secreted to the culture medium by Saccharomyces cererisiae transformed by pVT102-U/αMFL-PIP. The precursor is purified and converted into human insulin by tryptic transpeptidation. The purified human insulin is fully active and can be crystallized. The overall yield of human insulin is 25 mg per liter of culture medium.  相似文献   

12.
13.
Mutant isolation of mouse DNA topoisomerase II alpha in yeast.   总被引:1,自引:1,他引:0       下载免费PDF全文
N Adachi  H Ikeda    A Kikuchi 《Nucleic acids research》1994,22(20):4229-4233
For characterizing in vivo functions of a mammalian protein, it is informative to obtain conditional mutations and apply them to the mouse genetic system. However, the isolation of conditional mutations has been quite difficult in cultured cells. We report here that functional expression of a heterologous mammalian gene in the yeast Saccharomyces cerevisiae provides a system for isolating mutated genes. We found that the cloned mouse TOP2 alpha cDNA, which encodes mouse DNA topoisomerase II (topo II) alpha, could rescue the lethal phenotype caused by yeast top2 null mutation. In order to generate and select temperature-sensitive mouse topo II alpha, an expression plasmid was mutagenized in vitro and was transformed, using the plasmid shuffling method, into the yeast strain, in which the endogenous TOP2 gene had been disrupted. We observed that one of such clone of yeast cells harboring a mutagenized mouse TOP2 alpha showed temperature-sensitive growth. Enzymatic assays and sequencing analysis revealed that this phenotype was caused by the thermosensitive nature of the mutant mouse protein, which has isoleucine at amino acid 961 instead of threonine. Therefore we have isolated the first conditional mutation in the mouse TOP2 alpha.  相似文献   

14.
Human DNA topoisomerase I (topo I) has been purified from normal placenta and from a recombinant baculovirus expression system. A new radiolabeled plasmid DNA assay has been used to quantitate the activity of the purified enzymes and to compare the ability of several types of topo I-targeted drugs to induce topo I-mediated DNA strand breaks. The 100-kDa recombinant enzyme form isolated from the baculovirus expression system is able to relax 2564 ng of supercoiled M-13 mp19 plasmid per minute per nanogram of enzyme. The addition of camptothecin (1 microM) to the reaction lowers the rate to 1282 ng per minute per nanogram of enzyme. The 100-kDa topo I from human placenta is able to relax 1092 ng of supercoiled plasmid per minute per nanogram of enzyme and the 68-kDa topo I form from placenta is able to relax 2069 ng of supercoiled plasmid per minute per nanogram of enzyme. Camptothecin (1 microM) decreases the relaxation rate of the placental enzymes about 50%. In the presence of several different types of topo I-targeted drugs, both the recombinant and placental enzymes are induced to cleave plasmid DNA. Quantitative DNA cleavage assays with radioactive plasmid DNA and 9-aminocamptothecin, topotecan, SN-38, 10, 11-methylenedioxycamptothecin, 7-ethyl-10, 11-methylenedioxycamptothecin, 7-chloromethyl-10, 11-methylenedioxycamptothecin, nitidine, and 6-ethoxy-5, 6-dihydronitidine indicate that the order of potency in inducing topo I-mediated DNA breakage is methylenedioxycamptothecin analogs > SN-38 > 9-aminocamptothecin > topotecan and camptothecin > nitidine compounds. The order of potency correlates with the half-lives of the topo I-DNA drug complex determined with radiolabeled DNA in 0.45 M NaCl at 30 degrees C. The half-life of the complex formed with 7-chloromethyl-10,11-methylenedioxycamptothecin is greater than 90 min whereas the half-life of the topo I-DNA complex with 6-ethoxy-5, 6-dihydronitidine is less than 15 s. The other drugs tested were found to have drug complex half-lives which fall between these two extremes.  相似文献   

15.
Human topoisomerase IIIalpha (hTopo IIIalpha), the recently identified first member of the topoisomerase IA subfamily in humans, has a central domain which is highly homologous to the yeast topoisomerase III, but an overall organization closer to that of Escherichia coli DNA topoisomerase I. In order to determine the properties of hTopo IIIalpha, compared to those of other topoisomerase IA subfamily members, we purified this enzyme to near homogeneity, together with an active site-mutant Y337F. We show that hTopo IIIalpha is able to relax negatively supercoiled DNA in a distributive manner, leading to the total disappearance of the initial substrate and the appearance of intermediate topoisomers. This DNA relaxation activity is magnesium-dependent, although a low concentration of MgCl2is sufficient to obtain efficient catalysis. 32P-transfer experiments demonstrated that hTopo IIIalpha is able to cleave a single-stranded oligonucleotide and to bind covalently to the 5'-end of the cleaved DNA. Addition of 0.5 M NaCl reverses the reaction, leading to the religation of the oligo-nucleotide. Experiments utilizing several different single-stranded oligonucleotides permitted us to map several cleavage sites and to deduce a consensus sequence for DNA cleavage (CANNN downward arrow), which is different from that for other members of the Topo IA subfamily.  相似文献   

16.
DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.  相似文献   

17.
Rad51 can promote extensive strand exchange in vitro in the absence of ATP hydrolysis, and the Rad51-K191R mutant protein, which can bind but poorly hydrolyze ATP, also promotes strand exchange. A haploid strain expressing the rad51-K191R allele showed an equivalent sensitivity at low doses of ionizing radiation to rad51-K191A or rad51 null mutants and was defective in spontaneous and double-strand break-induced mitotic recombination. However, the rad51-K191R/rad51-K191R diploid sporulated and the haploid spores showed high viability, indicating no apparent defect in meiotic recombination. The DNA repair defect caused by the rad51-K191R allele was suppressed in diploids and by mating-type heterozygosity in haploids. RAD54 expressed from a high-copy-number plasmid also suppressed the gamma-ray sensitivity of rad51-K191R haploids. The suppression by mating-type heterozygosity of the DNA repair defect conferred by the rad51-K191R allele could occur by elevated expression of factors that act to stabilize, or promote catalysis, by the partially functional Rad51-K191R protein.  相似文献   

18.
Aspergillus nidulans strain G191 was transformed to hygromycin resistance using plasmid pDH25, which contains the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the A. nidulans trpC gene. Southern hybridizations of transformants revealed multiple, integrated copies of the vector. A pleiotropic effect conferring increased hygromycin B sensitivity was found to be associated with the A. nidulans pyrG89 allele. Plasmid pDH25 features a ClaI site immediately preceding the hph start codon thus permitting convenient replacement of the trpC sequences with other eukaryotic promoters.  相似文献   

19.
Topoisomerases alter DNA topology and are vital for the maintenance of genomic integrity. Topoisomerases I and II are also targets for widely used antitumor agents. We demonstrated previously that in the human leukemia cell line, HL-60, resistance to topoisomerase (topo) II-targeting drugs such as etoposide is associated with site-specific hypophosphorylation of topo II alpha. This effect can be mimicked in sensitive cells treated with the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM). Here we identify Ser-1106 as a major phosphorylation site in the catalytic domain of topo II alpha. This site lies within the consensus sequence for the acidotrophic kinases, casein kinase I and casein kinase II. Mutation of serine 1106 to alanine (S1106A) abrogates phosphorylation of phosphopeptides that were found to be hypophosphorylated in resistant HL-60 cells or sensitive cells treated with BAPTA-AM. Purified topo II alpha containing a S1106A substitution is 4-fold less active than wild type topo II alpha in decatenating kinetoplast DNA and also exhibits a 2-4-fold decrease in the level of etoposide-stabilized DNA cleavable complex formation. Saccharomyces cerevisiae (JN394t2-4) cells expressing S1106A mutant topo II alpha protein are more resistant to the cytotoxic effects of etoposide or amsacrine. These results demonstrate that Ca(2+)-regulated phosphorylation of Ser-1106 in the catalytic domain of topo II alpha modulates the enzymatic activity of this protein and sensitivity to topo II-targeting drugs.  相似文献   

20.
Resistance to anticancer drugs that target DNA topoisomerase II (topo II) isoforms alpha and/or beta is associated with decreased nuclear and increased cytoplasmic topo IIalpha. Earlier studies have confirmed that functional nuclear localization and export signal sequences (NLS and NES) are present in both isoforms. In this study, we show that topo II alpha and beta bind and are imported into the nucleus by importin alpha1, alpha3, and alpha5 in conjunction with importin beta. Topo IIalpha also binds exportin/CRM1 in vitro. However, wild-type topo IIalpha has only been observed in the cytoplasm of cells that are entering plateau phase growth. This suggests that topo IIalpha may shuttle between the nucleus and the cytoplasm with the equilibrium towards the nucleus in proliferating cells but towards the cytoplasm in plateau phase cells. The CRM1 inhibitor Leptomycin B increases the nuclear localization of GFP-tagged topo IIalpha with a mutant NLS, suggesting that its export is being inhibited. However, homokaryon shuttling experiments indicate that fluorescence-tagged wild-type topo II alpha and beta proteins do not shuttle in proliferating Cos-1 or HeLa cells. We conclude that topo II alpha and beta nuclear export is inhibited in proliferating cells so that these proteins do not shuttle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号