首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 degrees C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.  相似文献   

2.
In Gram-negative bacteria, a subset of inner membrane proteins in the major facilitator superfamily (MFS) acts as efflux pumps to decrease the intracellular concentrations of multiple toxic substrates and confers multidrug resistance. The Salmonella enterica sv. Typhimurium smvA gene encodes a product predicted to be an MFS protein most similar to QacA of Staphylococcus aureus. Like mutations in qacA, mutations in smvA confer increased sensitivity to methyl viologen (MV). Mutations in the adjacent ompD (porin) and yddG (drug/metabolite transporter) genes also confer increased sensitivity to MV, and mutations in smvA are epistatic to mutations in ompD or yddG for this phenotype. YddG and OmpD probably comprise a second efflux pump in which the OmpD porin acts as an outer membrane channel (OMC) protein for the efflux of MV and functions independently of the SmvA pump. In support of this idea, the pump dependent on YddG and OmpD has a different substrate specificity from the pump dependent on SmvA. Mutations in tolC, which encodes an OMC protein, confer increased resistance to MV. TolC apparently facilitates the import of MV, and a subset of OMC proteins including the OmpD porin and TolC may facilitate both import and export of distinct subsets of toxic substrates.  相似文献   

3.
Salmonella enterica serovar Typhimurium remodels the lipid A component of lipopolysaccharide, a major component of the outer membrane, to survive within animals. The activation of the sensor kinase PhoQ in host environments increases the synthesis of enzymes that deacylate, palmitoylate, hydroxylate, and attach aminoarabinose to lipid A, also known as endotoxin. These modifications promote bacterial resistance to antimicrobial peptides and reduce the host recognition of lipid A by Toll-like receptor 4. The Salmonella lipid A 3-O-deacylase, PagL, is an outer membrane protein whose expression is regulated by PhoQ. In S. enterica serovar Typhimurium strains that had the ability to add aminoarabinose to lipid A, 3-O-deacylated lipid A species were not detected, despite the PhoQ induction of PagL protein expression. In contrast, strains defective for the aminoarabinose modification of lipid A demonstrated in vivo PagL activity, indicating that this membrane modification inhibited PagL's enzymatic activity. Since not all lipid A molecules are modified with aminoarabinose upon PhoQ activation, these results cannot be ascribed to the substrate specificity of PagL. PagL-dependent deacylation was detected in sonically disrupted membranes and membranes treated with the nonionic detergent n-octyl-beta-d-glucopyranoside, suggesting that perturbation of the intact outer membrane releases PagL from posttranslational inhibition by aminoarabinose-containing membranes. Taken together, these results suggest that PagL enzymatic deacylation is posttranslationally inhibited by membrane environments, which either sequester PagL from its substrate or alter its conformation.  相似文献   

4.

Background  

Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis.  相似文献   

5.
The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl(2). Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.  相似文献   

6.
7.
The crystal structure of Escherichia coli FhuA reveals a beta-barrel domain that is closed by a globular cork domain. It has been assumed that the proton motive force of the cytoplasmic membrane through the interaction of the TonB protein with the TonB box of the cork opens the FhuA channel. Yet, deletion of the cork results in an FhuA derivative, FhuADelta5-160, that still displays TonB-dependent substrate transport and phage receptor activity. To investigate this unexpected finding further, we constructed FhuADelta5-160 derivatives of FhuA proteins from Salmonella paratyphi B, Salmonella enterica serovar Typhimurium, and Pantoea agglomerans. The FhuADelta5-160 proteins inserted correctly into the outer membrane, and with the exception of the P. agglomerans protein, transported ferrichrome and albomycin. FhuA hybrids consisting of the beta-barrel of one strain and the cork of another strain were active and showed higher TonB-dependent ferrichrome transport rates than the corkless derivatives. Exceptions were the E. coli beta-barrel/Salmonella serovar Typhimurium cork hybrid protein and the Salmonella serovar Typhimurium beta-barrel/P. agglomerans cork hybrid protein, both of which were less active than the beta-barrels alone. Each of the FhuA mutant proteins displayed activity for each of their ligands, except for phage T5, only when coupled to TonB. The hybrid FhuA proteins displayed a similar activity with the E. coli TonB protein as with their cognate TonB proteins. Sensitivity to phages T1, T5, and phi80, rifamycin CGP 4832, and colicin M was determined by the beta-barrel, whereas sensitivity to phage ES18 and microcin J25 required both the beta-barrel and cork domains. These results demonstrate that the beta-barrel domain of FhuA confers activity and specificity and responds to TonB and that the cork domains of various FhuA proteins can be interchanged and contribute to the activities of the FhuA hybrids.  相似文献   

8.
A panel of monoclonal antibodies, seven against the trimeric and seven against the monomeric forms to outer membrane protein D (OmpD) of Salmonella typhimurium were produced. The specificities of these monoclonal antibodies for the porin proteins of S. typhimurium and their cross-reactions with Salmonella porins OmpC and OmpF were determined by Western immunoblotting and enzyme-linked immunosorbent assay. We observed that OmpD shared more epitopes and had greater structural similarity with OmpC than with OmpF.  相似文献   

9.
Mutations in apeR, a regulatory locus of the outer membrane esterase apeE from Salmonella enterica serovar Typhimurium, were shown to be alleles of the pstSCAB-phoU high-affinity phosphate transport operon. Expression of apeE was induced by phosphate limitation, and this induction required the phoBR phosphate regulatory system.  相似文献   

10.
11.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

12.
Tan L  Darby C 《Journal of bacteriology》2005,187(18):6599-6600
Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can survive without Kdo in its LPS.  相似文献   

13.
Genomic subtractive hybridization was performed between Salmonella enterica serovar Typhimurium LT2 and DT104 to search for novel Salmonella serovar Typhimurium DT104-specific sequences. The subtraction resulted mainly in the isolation of DNA fragments with sequence similarity to phages. Two fragments identified were associated with possible virulence factors. One fragment was identical to irsA of Salmonella serovar Typhimurium ATCC 14028, which is suggested to be involved in macrophage survival. The other fragment was homologous to HldD, an Escherichia coli O157:H7 lipopolysaccharide assembly-related protein. Five selected DNA fragments-irsA, the HldD homologue, and three fragments with sequence similarity to prophages-were tested for their presence in 17 Salmonella serovar Typhimurium DT104 isolates and 27 non-DT104 isolates by PCR. All five selected DNA fragments were Salmonella serovar Typhimurium DT104 specific among the serovar Typhimurium isolates tested. These DNA fragments can be useful for better detection and typing of Salmonella serovar Typhimurium DT104.  相似文献   

14.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

15.
The effect of lactic acid on the outer membrane permeability of Escherichia coli O157:H7, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was studied utilizing a fluorescent-probe uptake assay and sensitization to bacteriolysis. For control purposes, similar assays were performed with EDTA (a permeabilizer acting by chelation) and with hydrochloric acid, the latter at pH values corresponding to those yielded by lactic acid, and also in the presence of KCN. Already 5 mM (pH 4.0) lactic acid caused prominent permeabilization in each species, the effect in the fluorescence assay being stronger than that of EDTA or HCl. Similar results were obtained in the presence of KCN, except for P. aeruginosa, for which an increase in the effect of HCl was observed in the presence of KCN. The permeabilization by lactic and hydrochloric acid was partly abolished by MgCl2. Lactic acid sensitized E. coli and serovar Typhimurium to the lytic action of sodium dodecyl sulfate (SDS) more efficiently than did HCl, whereas both acids sensitized P. aeruginosa to SDS and to Triton X-100. P. aeruginosa was effectively sensitized to lysozyme by lactic acid and by HCl. Considerable proportions of lipopolysaccharide were liberated from serovar Typhimurium by these acids; analysis of liberated material by electrophoresis and by fatty acid analysis showed that lactic acid was more active than EDTA or HCl in liberating lipopolysaccharide from the outer membrane. Thus, lactic acid, in addition to its antimicrobial property due to the lowering of the pH, also functions as a permeabilizer of the gram-negative bacterial outer membrane and may act as a potentiator of the effects of other antimicrobial substances.  相似文献   

16.
In this study we characterized aro mutants of Salmonella enterica serovars Enteritidis and Typhimurium, which are frequently used as live oral vaccines. We found that the aroA, aroD, and aroC mutants were sensitive to blood serum, albumen, EDTA, and ovotransferrin, and this defect could be complemented by an appropriate aro gene cloned in a plasmid. Subsequent microarray analysis of gene expression in the aroD mutant in serovar Typhimurium indicated that the reason for this sensitivity might be the upregulation of murA. To confirm this, we artificially overexpressed murA from a multicopy plasmid, and this overexpression caused sensitivity of the strain to albumen and EDTA but not to serum and ovotransferrin. We concluded that attenuation of aro mutants is caused not only by their inability to synthesize aromatic metabolites but also by their defect in cell wall and outer membrane functions associated with decreased resistance to components of innate immune response.  相似文献   

17.
The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.  相似文献   

18.

Background  

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS) and identified from mass spectral database searches.  相似文献   

19.
Salmonella enterica serovar Typhimurium and its surface components were assessed for their inflammatory potential by footpad oedema test using plethysmometer. Inflammation was found to be the highest when outer membrane proteins (OMPs) were used as inflammagen followed by lipid associated protein-lipopolysaccharide complex (LAP-LPS) and lipopolysaccharides (LPS). Inflammation produced by OMPs was found to be comparable to that by carrageenan (a known positive inflammagen). However, injection of L-histidine (an antioxidant) prior to administration of carrageenan or Salmonella enterica serovar Typhimurium inhibited the inflammation, which indicated the involvement of oxidants during inflammatory response. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nitric oxide (NO) production by peritoneal macrophages from infected mice exhibited a significant increase as compared to those of the immunized mice. In contrast, glutathione production was found to be the maximum in the macrophages taken from OMPs-immunized mice followed by LAP-LPS and LPS alone. The biochemical studies correlated well with histopathological studies of intestinal tissue of animals from various groups. Based upon these parameters, inflammation seems to be modulated by OMPs and LAP-LPS, which may be because of the protein moieties present in the components. Hence, immunization with protein moieties having L-histidine or L-histidine-like structures may suggest an alternative to the potential therapeutic values of anti-inflammatory drugs. Thus the results of this study form the basis for evaluating these antigens (either alone or in combination with polysaccharides) for preventive intervention rather than therapeutic. (Mol Cell Biochem 270: 167–175, 2005)  相似文献   

20.
Brochocin-C is a two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 that has a broad activity spectrum comparable to that of nisin. Brochocin-C has an inhibitory effect on EDTA-treated gram-negative bacteria, Salmonella enterica serovar Typhimurium lipopolysaccharide mutants, and spheroplasts of Typhimurium strains LT2 and SL3600. Brochocin-C treatment of cells and spheroplasts of strains of LT2 and SL3600 resulted in hydrolysis of ATP. The outer membrane of gram-negative bacteria protects the cytoplasmic membrane from the action of brochocin-C. It appears that brochocin-C is similar to nisin and possibly does not require a membrane receptor for its function; however, the difference in effect of the two bacteriocins on intracellular ATP indicates that they cause different pore sizes in the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号