首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using monoclonal antibodies (McAbs) which can distinguish between breast- and leg-type troponin T (TnT), we studied the spatial distribution of TnT isoforms in adult chicken fast skeletal muscles. The breast (pectoralis major) and leg (iliotibialis posterior) muscles were composed predominantly of homogeneous fibers containing breast- and leg-type TnT, respectively. The posterior latissimus dorsi muscle was composed of heterogeneous fibers of at least two types, namely breast and leg types. In developing and regenerating fast muscles, only leg-type TnT was expressed at early stages, and later breast-type TnT appeared either transiently or permanently. This led ultimately to several distinct adult fast muscle breast/leg TnT isoform profiles. Since both types of TnT were synthesized in embryonic and regenerating muscles with nerves intact as well as in regenerating muscles with nerves resected, the switching on of their expression during fast muscle development appears to be independent of nerves. However, its full development ("fine tuning" of the protein isoform distribution within the fast fiber types) and the maintenance of the adult state are presumed to be dependent on the nerves, since, although regenerating fibers in denervated muscles could exhibit the early and then the later embryonic stainabilities, they again returned to the early embryonic state; further, the denervation of adult muscles caused the replacement of TnT isoform from the adult to the early embryonic state.  相似文献   

2.
The developmentalexpression of tissue-specific isoforms ofcytochrome-c oxidase(COX) subunit VIII [heart (COX VIII-H) and liver (COXVIII-L)] and the influence of innervation were examined inregenerating fast [extensor digitorum longus (EDL)] andslow (soleus) muscles. In adult muscles, COX VIII-H was the predominant isoform. The COX VIII-L mRNA was expressed 3 days after induction ofregeneration, and it progressively decreased after 7, 10, 14, and 30 days of regeneration in both muscles. In contrast, the expression ofCOX VIII-H mRNA accumulated as myogenesis proceeded to the myotubestage between 7 and 10 days of regeneration and progressively increasedto near control levels by 30 days. The influence of innervation on theexpression of COX VIII and -actin isoforms wasexamined in control, innervated, and denervatedregenerating muscles at 3 and 10 days. The relative expression of COXVIII-L mRNA in denervated regenerating EDL muscles was significantly greater, while that of COX VIII-H was significantlyless than in innervated regenerating EDL muscles after 10 days ofregeneration. Similarly, cardiac -actin mRNA levelswere elevated in denervated regenerating EDL muscles after 10 days ofregeneration. In conclusion, motor innervation influences thetransition from the COX VIII-L to COX VIII-H isoform during myogenesisin regenerating muscles.

  相似文献   

3.
The heterotetrameric sarcoglycan complex, composed of alpha-, beta-, gamma-, and delta-sarcoglycans, is an important component of the dystrophin-associated glycoprotein assembly in striated muscle. Mutations in any of the four genes encoding sarcoglycans cause a deficiency in all sarcoglycans in the sarcolemma and produce one of four types of limb-girdle muscular dystrophy. A fifth widely expressed sarcoglycan, epsilon-sarcoglycan, has been recently described. epsilon-Sarcoglycan is homologous to alpha-sarcoglycan, but whether it associates with the other sarcoglycans in muscle is not known. In this study, we use wild type and alpha-sarcoglycan-deficient mice to analyze the localization and association of sarcoglycans in skeletal muscle in vivo. The amounts of beta-, gamma-, and delta-sarcoglycans are reduced in alpha-sarcoglycan mutants, whereas the amount of epsilon-sarcoglycan is unchanged. We show here that epsilon-sarcoglycan is complexed with beta-, gamma-, and delta-sarcoglycans in both wild type and alpha-sarcoglycan mutant mice. We also use C2C12 myocytes to study the temporal expression and organization of sarcoglycan complexes during muscle cell differentiation in vitro. In C2C12 cells, alpha- and epsilon-sarcoglycans form separate complexes with beta-, gamma-, and delta-sarcoglycans. Both types of complexes are expressed at the cell surface and presumed to be functional. These results suggest that epsilon-sarcoglycan serves a function similar to that of alpha-sarcoglycan and that residual beta-, gamma-, and delta-sarcoglycan seen in mutant mice and alpha-sarcoglycan-deficient patients is due to its association with epsilon-sarcoglycan.  相似文献   

4.
5.
6.
Ribosomes from 8-day-regenerating rat skeletal muscle have been shown to be more active in poly(U)-directed polyphenylalanine synthesis than ribosomes from control muscle. This difference persists after salt washing of the ribosomes and does not appear to be due to the presence of ribonuclease associated with the control ribosome population. Ribosomes from control muscle were also less active than those from regenerates in the nonenzymatic binding of phenylalanyl-tRNA to ribosomes and in the peptidyltransferase reaction. Three glutamyl-tRNA isoacceptors have been isolated from 8-day-regenerating rat skeletal muscle by preparative RPC-5 chromatography of total tRNA charged with [3H]glutamic acid. The two major isoacceptors observed, tRNAgluI and tRNAgluIII, respond to the glutamic acid codons GAG and GAA, respectively. A third, minor glutamyl isoacceptor, tRNAgluII, also responds to the codon GAA. When the three isoacceptors were tested for function in a polysomal cell-free protein synthesizing system, it was found that their relative levels of utilization were essentially identical to their relative abundances. Thus, the tRNA which increases in relative amount after the induction of regeneration, tRNAgluII, is not preferentially utilized for overall muscle protein synthesis.  相似文献   

7.
Myosin isoforms in mammalian skeletal muscle   总被引:9,自引:0,他引:9  
  相似文献   

8.
9.
10.
The mechanism underlying the formation of easily releasable myofilaments, from myofibrils treated with an ATP-containing relaxing solution, was examined in this investigation. The proportion of releasable myofilaments purified from myofibrils of cardiac, fast- and slow-twitch muscles increased as the [ATP] was raised from 0 to 8.5 mM. The protein composition of the easily releasable myofilaments did not differ with increasing ATP concentrations as observed by 5–15% linear gradient SDS-PAGE. There is a nucleotide specificity to the release of myofilaments in the order of ATP > GTP >> UTP > CTP. Experiments with AMP-PNP and inorganic phosphate (Pi) showed that ATP hydrolysis and the build up of Pi are not requirements in the formation of the easily releasable myofilaments. The release of myofilaments was found to be insensitive to variations in pH from 6.5 to 7.5. The ATP stimulation of myofilament release is ubiquitin-independent, since incubation of purified myofibrils with ubiquitin (1–100 g/ml) at both 20 and 37°C did not change the amount released. Modifying the free sulfhydryl group content by treatment of myofibrils with NEM (0.01–1 mM) or silver nitrate (0.1–10 mM) decreased the proportion of myofilaments that were releasable. Exclusion of 1 mM DTT from the preparation of myofibrils had similar results. These results indicate that the formation of easily releasable myofilaments can be mediated by metabolically related parameters such as the adenosine nucleotides and the reduction-oxidation status of the myofibrillar proteins of striated muscle.  相似文献   

11.
Separation of thick and thin myofilaments   总被引:6,自引:0,他引:6  
  相似文献   

12.
The extensibility of the myofilaments in vertebrate skeletal muscle was studied by stretching glycerinated rabbit psoas muscle fibers in rigor state and examining the resulting extension of sarcomere structures under an electron microscope. Although stretches applied to rigor fibers produced a successive yielding of the weakest sarcomeres, the length of the remaining intact sarcomeres in many myofibrils was fairly uniform, being definitely longer than the sarcomeres in the control, nonstretched part of rigor fibers. The stretch-induced increase in sarcomere length was found to be taken up by the extension of the H zone and the I band, whereas the amount of overlap between the thick and thin filaments did not change appreciably with stretches of 10-20%. The thick filament extension in the H zone was localized in the bare regions, whereas the thin filament extension in the I band appeared to take place uniformly along the filament length. No marked increase in the Z-line width was observed even with stretches of 20-30%. These results clearly demonstrate the extensibility of the thick and thin filaments. The possible contribution of the myofilament compliance to the series elastic component (SEC) in vertebrate skeletal muscle fibers is discussed on the basis of the electron microscopic data and the force-extension curve of the SEC in rigor fibers.  相似文献   

13.
Skeletal muscle regenerates following grafting, but little is known about protein synthesis and its regulation during regeneration. We determined the sequence of changes in protein synthesis in rat extensor digitorum longus (EDL) muscle by the measurement of phenylalanine (Phe) incorporation into muscle protein at various times after grafting. Compared with control EDL, Phe incorporation in grafts doubled in 1 day, was four- to eight-fold greater from days 2 to 10 after grafting, and then subsided. Tissue mass (wet weight) increased rapidly from days 7 to 20 in EDL grafts. The maximal increase in protein synthesis occurred 7-10 days after grafting, whether or not the nerve was left intact. Autoradiography indicated that incorporated radioactivity was associated with regenerating muscle fibers on day 10. Deficiencies of insulin, pituitary or testicular hormones, or chronic in vivo administration of insulin, growth hormone, testosterone, or tri-iodothyronine did not substantially alter the elevation in incorporation of the Phe into muscle protein 10 days after grafting. The breakdown of EDL protein, measured in vitro simultaneously with protein synthesis, was increased five-fold, and overall protein degradation was elevated six-fold 10 days after grafting. These findings indicate that Phe incorporation is rapidly elevated following grafting of the EDL, and that by days 7-10 reflects synthesis in regenerating muscle fibers. The increase in protein synthesis associated with muscle regeneration at this time appears to be independent of innervation and anabolic hormones.  相似文献   

14.
15.
Sepsis is associated with a pronounced catabolic response in skeletal muscle, mainly reflecting degradation of the myofibrillar proteins actin and myosin. Recent studies suggest that sepsis-induced muscle proteolysis may reflect ubiquitin-proteasome-dependent protein breakdown. An apparently conflicting observation is that the ubiquitin-proteasome pathway does not degrade intact myofibrils. Thus, it is possible that actin and myosin need to be released from the myofibrils before they can be ubiquitinated and degraded by the proteasome. We tested the hypothesis that sepsis results in disruption of Z-bands, increased expression of calpains, and calcium-dependent release of myofilaments in skeletal muscle. Sepsis induced in rats by cecal ligation and puncture resulted in increased gene expression of micro-calpain, m-calpain, and p94 and in Z-band disintegration in the extensor digitorum longus muscle. The release of myofilaments from myofibrillar proteins was increased in septic muscle. This response to sepsis was blocked by treating the rats with dantrolene, a substance that inhibits the release of calcium from intracellular stores to the cytoplasm. The present results provide evidence that sepsis is associated with Z-band disintegration and a calcium-dependent release of myofilaments in skeletal muscle. Release of myofilaments may be an initial and perhaps rate-limiting component of sepsis-induced muscle breakdown.  相似文献   

16.
Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.  相似文献   

17.
Aquaporins mediate the movement of water across biomembranes. Arabidopsis thaliana contains 35 aquaporins that belong to four subfamilies (PIP, TIP, SIP, and NIP). We investigated their expression profiles immunochemically in suspension-cultured Arabidopsis thaliana cells during growth and in response to salt and osmotic stresses. Protein amounts of all aquaporins were much lower in cultured cells than in the plant tissues. This is consistent with the low water permeability of protoplasts from cultured cells. After treatment with NaCl, the protein amounts of PIP2;1, PIP2;2, and PIP2;3 in the cells increased several-fold, and those of TIP1;1 and TIP1;2, 15- and 3-fold respectively. PIP1 did not change under the stress. Cell death began after 19 d in culture, accompanied by marked accumulation of PIPs and TIPs and a gradual decrease in SIPs. Our results suggest the followings: (i) Accumulation of aquaporin isoforms was individually regulated at low levels in single cells. (ii) At least PIP2;2, PIP2;3, TIP1;1, and TIP1;2 are stress-responsive aquaporins in suspension cells. (iii) A sudden increment of several members of PIP2 and TIP1 subfamilies might be related to cell death.  相似文献   

18.
Isoforms of C-protein in adult chickens which differ in fast (pectoralis major, PM) and slow (anterior latissimus dorsi, ALD) skeletal muscles can be distinguished immunochemically with monoclonal antibodies (McAbs) specific for the respective fast (MF-1) and slow (ALD-66) protein variants (Reinach et al., 1982 and 1983). The expression of these C-proteins during chick muscle development in vivo has been analyzed by immunoblot and immunofluorescence procedures. Neither MF-1 nor ALD-66 reacted with whole-cell lysates or myofibrils from PM of 12-day-old embryos. However, both McAbs bound to peptides of 145 kDa in PM from late embryonic and young posthatched chickens. All of the myofibers in these muscles reacted with both antibodies, but the binding of the anti-slow McAb (ALD-66) diminished progressively with age and was completely negative with PM by 2 weeks after hatching. In contrast, the ALD muscle from 17 days in ovo thru adulthood only reacted with ALD-66; no binding of MF-1 could be detected at these stages. Since both fast and slow myosin light chains (LC) coexist within embryonic pectoralis and ALD muscles (e.g., G. F. Gauthier, S. Lowey, P. A. Benfield, and A. W. Hobbs, 1982, J. Cell Biol.92, 471–484) yet segregate to specific fast and slow muscle fibers at different stages of development, the temporal transitions of C-protein and myosin LC were compared during myogenesis. “Slow-type” C-protein appeared after the disappearance of slow myosin light chains, whereas the accumulation of the “fast-type” light chains occurred before the expression of “fast-type” C-protein. The pattern of isoform transitions appears to be far more complex than previously suspected.  相似文献   

19.
Immunoblot analyses with antibodies against the peroxisomal beta-oxidation enzymes from rat liver showed the presence of these enzymes in rat and human liver and kidney and rat adrenal gland. The bifunctional protein could not be detected in muscle tissues or cultured muscle cells. Acyl-CoA oxidase was detected in rat heart and cultured human muscle cells. 3-Ketoacyl-CoA thiolase was also detected in human and rat heart and skeletal muscle; however, this enzyme was not detectable in skeletal muscle of Zellweger patients, in agreement with the absence of peroxisomal fatty acid oxidation.  相似文献   

20.
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号