首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biopterin, the cofactor for tyrosine hydroxylase and tryptophan hydroxylase, was decreased in caudate nucleus, hypothalamus and cerebellum of the rolling mouse. Though there were not significant differences of tyrosine hydroxylase and tryptophan hydroxylase activities between the rolling and normal control mouse in the hypothalamus, the rolling showed significant increase of biopterin concentration and tyrosine hydroxylase activity after administration of thyrotropin releasing hormone (TRH). These results suggest that ataxic gait of the rolling mouse may be partly due to some abnormalities of catecholaminergic neurons, especially noradrenergic neurons, and that TRH may improve the abnormalities of catecholaminergic neurons. The changes of biopterin concentration by TRH administration indicate that biopterin may be a regulatory factor in catecholamine biosynthesis.  相似文献   

2.
The effects of (6R)- and (6S)-tetrahydrobiopterin (BPH4), tetrahydroneopterin, and 6-methyltetrahydropterin on the activity of tryptophan hydroxylase were investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measurement of 5-hydroxytryptophan (5-HTP) formation under inhibition of aromatic L-amino acid decarboxylase with use of HPLC-fluorometric detection. (6R)-BPH4 (the naturally occurring form) at 42 microM, tetrahydroneopterin at 50 microM, and 6-methyltetrahydropterin at 100 microM increased tryptophan hydroxylase activity to 350, 145, and 146% of control values, respectively. (6S)-BPH4, however, had no significant effects on tryptophan hydroxylase activity. These results suggest that tryptophan hydroxylase is subsaturating in vivo for the naturally occurring cofactor, (6R)-BPH4, and that the concentration of (6R)-BPH4 may play an important role for the regulation of tryptophan hydroxylase activity in vivo.  相似文献   

3.
The effects of 6R-5,6,7,8-tetrahydro-L-biopterin (6R-BH4), the in vivo cofactor for tryptophan hydroxylase, on the synthesis, release, and metabolism of serotonin were studied in superfused slices from rat hippocampus. 6R-BH4 did not alter the spontaneous release of [3H]serotonin but it did significantly increase release when slices were depolarized with 30 mM KCl. Under the same incubation conditions, 6R-BH4 altered neither the synthesis (basal or tryptophan-stimulated) nor the metabolism of serotonin in hippocampal slices. The synthetic pteridine 6-methyl-5,6,7,8-tetrahydropterin also augmented release under depolarizing conditions whereas biopterin, the oxidized form of 6R-BH4, did not. The 6S isomer of BH4, which is relatively inactive as a cofactor for tryptophan hydroxylase, was equipotent with 6R-BH4 in stimulating serotonin release. 6R-BH4 did not inhibit serotonin uptake nor did it function as a serotonin autoreceptor antagonist to increase release. A direct serotonin releasing effect of 6R-BH4, like that produced by p-chloroamphetamine, could also be ruled out. At suboptimal concentrations of extracellular calcium, the KCl-induced release of 3H was significantly reduced, yet the increase in release caused by BH4 remained the same in magnitude. It is concluded that 6R-BH4 increases the depolarization-induced release of serotonin through an interaction with the release mechanism itself, possibly by enhancing calcium influx or by increasing the sensitivity of the release mechanism to calcium. The effects of 6R-BH4 on serotonin release are independent from its function as the cofactor for tryptophan hydroxylase.  相似文献   

4.
Changes in tissue and extracellular serotonin (5-HT) in raphe dorsalis, raphe medialis and in their main projections areas (hippocampus, striatum and frontal cortex) were investigated at short and long-term times after single injection (5 mg/kg ip) of a novel tryptophan hydroxylase inhibitor, p-ethynylphenylalanine (p-EPA). The 5-HT tissue concentration decreased significantly in raphe nuclei, 30 min post-injection and for 4 days, whereas it decreased from 24 hours post-injection in the 5-HT projections. Normal 5-HT levels reappeared after 12 days post-injection in all areas. Moreover, in the projection areas, the extracellular 5-HT levels decreased rapidly, 90, 40 and 30 min after p-EPA injection, in hippocampus, striatum and frontal cortex, respectively. Decreased accumulation of 5-hydroxytryptophan (5-HTP) under NSD-101 perfusion in the serotoninergic projections after p-EPA injection, confirmed the direct inhibitory effect of the drug on the tryptophan hydroxylase activity. These results demonstrated that p-EPA is a useful pharmacological tool which powerfully, acutely and irreversibly reduces the 5-HT levels.  相似文献   

5.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

6.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

7.
A new method was developed to study the unsupplemented tryptophan hydroxylase system in brain tissue slices from the raphe nuclei of the rat by high-performance liquid chromatography (HPLC) with fluorescence detection. Tryptophan hydroxylase activity was measured by determining 5-hydroxytryptophan (5-HTP) accumulation in raphe nuclei slices containing all of the enzyme system (the hydroxylase, tetrahydrobiopterin, and dihydropteridine reductase) in the presence of NSD-1055 (an inhibitor of aromatic l-amino acid decarboxylase). An optimum temperature was observed at 25°C and the reaction progressed linearly for 60 min. The hydroxylation of tryptophan was maximal by the addition of 0.2 mM tryptophan in the medium. A maximum 1.5-fold activation was shown at 0.2 mM 6-methyltetrahydropterin in the presence of 10 mM dithiothreitol. Dithiothreitol alone did not affect the activity. A 1.5-fold activation was observed when incubation was carried out under gas phase of 95% oxygen and 5% CO2 instead of air. The activity was inhibited by 75% at 10?4 M p-chlorophenylalanine. Both A-23187, a calcium ionophore, and dibutyryl cyclic AMP (DBc-AMP) stimulated the hydroxylation of tryptophan. The activation by A-23187 plus DBc-AMP was more than additive, suggesting the two activating mechanisms by Ca2+ and cyclic AMP may be operating synergistically.  相似文献   

8.
The biosynthesis and metabolism of 5-hydroxytryptamine (serotonin; 5-HT) in the cestode Hymenolepis diminuta was investigated by High Performance Liquid Chromatography (HPLC). Incubation of intact H. diminuta in [3H]tryptophan resulted in substantial radioactivity recovered in 5-HT, 5-hydroxytryptophan (5-HTP), and 5-hydroxyindoleacetic acid (5-HIAA). Furthermore, the tissue levels of 5-HT and 5-HTP, as determined by HPLC with electrochemical detection, were significantly depressed when the animals were deprived of tryptophan. On the other hand, the tissue levels of 5-HTP were significantly increased following incubation with the 5-HTP decarboxylase inhibitor m-hydroxybenzylhydrazine. The synthesis and metabolism of 5-HT are discussed in the light of 5-HT as a physiological transmitter in H. diminuta.  相似文献   

9.
Experimenting on the slices of cortex and dorsal raphe nucleus of midbrain of rats which were incubated with 3H-hydroxytrypta-mine (3H-HT) studies showed the influence of series of serotonin agonists on the spontaneous and electrically stimulated release of 3H-HT from the slices. It was established that the serotonin in concentration of 10(-5) mol/l similarly inhibits the release of 3H-HT from the electrically stimulated slices of the brain cortex (78.6%) and on slices of the dorsal raphe nucleus of the midbrain (81.6%) had no effect on the spontaneous release of serotonin. The serotonin agonists in order of increasing ability to inhibit the electrically stimulated release of 3H-HT from the cortex slices is as follows: ipsapirone (0%), 8-OH-DPAT (23%), kampirone (26.5%), 1.2-PP (28.6%), kaplapirone (35.7%), buspirone (48%) and TFMPP (67%). On the ability to influence the release of 3H-HT from the electrically stimulated slices of the dorsal raphe nucleus of the midbrain of the rats serotonin agonists were in the following order: TEMPP (12.3%), kampirone (40%), 1.2-PP (42.9%), ipsapirone (52%), 8-OH-DPAT (54.1%), kampirone (57.2%) and buspirone (65.3%). It is suggested that the effect of both ipsapirone, kampirone and 8-OH-DPAT is greatly localized on the somato-dendritic synapses P1A-HT receptors, TEMPP is more on the terminal axons of HT-ergic neurones while kampirone, buspirone and active metabolite 1.2-PP act on the presynaptic and somatodendritic autoreceptors of serotonin.  相似文献   

10.
Y Kabayama  Y Kato  K Tojo  A Shimatsu  H Ohta  H Imura 《Life sciences》1985,36(13):1287-1294
Intracerebroventricular (icv) injection of DN1417 (0.3, 3 and 30 nmol/rat), a TRH analog, resulted in a dose-related increase in plasma glucose, epinephrine and norepinephrine levels in conscious male rats. The effects of DN1417 were more potent and longer-lasting than those of TRH on a molar basis. Intravenous injection of DN1417 (30 nmol/rat) did not change plasma glucose, epinephrine and norepinephrine levels. Pretreatment with hexamethonium (1.5 mg/100 g body wt, iv, 2 min before) inhibited plasma glucose, epinephrine and norepinephrine responses to DN1417 (3 nmol/rat, icv). DN1417 did not change plasma glucose, epinephrine and norepinephrine levels in rats after total adrenalectomy. In the animals pretreated with cysteamine (30 mg/100 g body wt, sc, 4 h before), basal plasma glucose, epinephrine and norepinephrine levels were raised, and exaggerated responses of plasma glucose, epinephrine and norepinephrine to DN1417 (3 nmol/rat, icv) were obtained. These results indicate that DN1417 has a potent and long-lasting effect in the central nervous system in stimulating the secretion of catecholamines through the autonomic nervous system, which is associated with an elevation of plasma glucose and that endogenous hypothalamic somatostatin may inhibit the action of DN1417.  相似文献   

11.
The activities of three pterin-requiring monooxygenases, phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase, are regulated by the level of the pterin cofactor, (6R)-l-erythro-tetrahydrobiopterin, which is synthesized from guanosine triphosphate (GTP). Since tyrosine hydroxylase or tryptophan hydroxylase is the rate-limiting enzyme for the biosynthesis of catecholamines (dopamine, norepinephrine and epinephrine) or serotonin in monoaminergic neurons, biosynthesis of tetrahydrobiopterin from GTP may also regulate the tissue level of monoamine transmitters. Recent evidences indicate that biosynthesis of tetrahydrobiopterin and that of biogenic monoamines may be regulated each other.  相似文献   

12.
Tryptophan hydroxylase oxidizes L-tryptophan to 5-hydroxy-L-tryptophan in the rate-determining step of serotonin biosynthesis. We have determined the X-ray crystal structure (1.7 A) of a truncated functional form of human tryptophan hydroxylase with the bound cofactor analogue 7,8-dihydro-L-biopterin, providing the first atomic-resolution information for the catalytic domain of this important enzyme. Comparison of the three-dimensional structures of all three members of the aromatic amino acid hydroxylase family--tyrosine hydroxylase, phenylalanine hydroxylase, and tryptophan hydroxylase--reveals important differences at the active sites.  相似文献   

13.
By the use of the brain micro-dialysis technique combined with HPLC, the changes in the extracellular levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and a serotonin(5-HT) metabolite, 5-hydroxyindoleacetic acid (5-HIAA) were examined in the rat striatum before and after intracerebral injection of a vehicle or (6R)-l-erythro-tetrahydrobiopterin (6R-BH4), the natural form of the cofactor for the tryrosine hydroxylase and tryptophan hydroxylase. No apparent change after the 6R-BH, treatment was found in the levels of DA, DOPAC, HVA and 5-HIAA in the striatal dialysate. In contrast, the levels of total biopterin in both the operated (dialysis probe-implanted) and unoperated striatum of 6R-BH4-treated rats increased by 23- and 93-fold, respectively, when compared with those of the control, vehicle-treated rats. The results indicate that increased levels of the tetrahydrobiopterin cofactor may not affect the release of DA and the extracellular level of DA and 5-HT metabolites in the physiologically normal brain.  相似文献   

14.
S Narumi  Y Nagai  M Miyamoto  Y Nagawa 《Life sciences》1983,32(14):1637-1645
TRH or its analog DN-1417 (gamma-butyrolactone-gamma-carbonyl-L-histidyl-L-proliamide) given 15 min after intravenous (i.v.) administration of pentobarbital (30 mg/kg) markedly shortened the pentobarbital-induced sleeping time in rats. This effect was almost completely abolished by intracerebroventricular pretreatment with atropine methylbromide (20 micrograms/rat), thereby suggesting the involvement of cholinergic mechanism. The action mechanism was investigated using rat brain slices. TRH (10(-6)-10(-4)M) or DN-1417 (10(-7)-10(-5)M) caused significant increases in the uptake of [3H]-choline into striatal slices. TRH(10(-4)M) or DN-1417(10(-5)M) also stimulated the conversion of [3H]-choline to [3H]-acetylcholine in striatal slices. A 30% reduction of acetylcholine synthesis from [3H]-choline in hippocampal slices and a 40% reduction of [3H]-choline uptake in slices of cerebral cortex, hippocampus and hypothalamus were observed in rats pretreated with pentobarbital (60 mg/kg, i.v.). TRH or DN-1417 (20 mg/kg, i.v.) given 15 min after the administration of pentobarbital markedly reversed both of the pentobarbital effects. Direct application of pentobarbital (5 X 10(-4)M) to slices in vitro also caused a 20-40% reduction of [3H]-choline uptake of cerebral cortex, hippocampus and diencephalon. A concomitant application of TRH(10(-4)M) or DN-1417(10(-5)M) and pentobarbital abolished the pentobarbital effect. These results provide neurochemical evidence that the antagonistic effects of TRH and DN-1417 on pentobarbital-induced narcosis are closely related to alterations in the rat brain choline uptake and acetylcholine synthesis, which are considered to be measures of the activity of cholinergic neurons.  相似文献   

15.
Rat brain biopterin, the hydroxylase cofactor, was observed to distribute equally across regional subcellular fractions, rather than to codistribute neuronally with tyrosine and tryptophan hydroxylases for which it functions. Over a 24 h period with light/dark phasing, which some groups have shown to result in cycling of biopterin levels in striate and certain other regions, only the biopterin associated with the crude nuclear fraction of the striate (not associated with neurotransmitter synthesis) demonstrated a diurnal cycle. The selectivity of this perturbation response to the striate nuclear fraction suggests that (1) multiple subcellular loci of biopterin might exist independently in rat brain neurons and (2) the pterin's availability for neurotransmitter biosynthesis is limited beyond its apparent regional concentration. The demonstration of multiple independent sources of neuronal biopterin may be relevant to understanding why regional levels have been so resistant to efforts at pharmacological manipulation (only amphetamine and CRF have changed striate biopterin levels). It also shows that changes in regional hydroxylase cofactor levels may not be related to neurotransmitter synthesis, but instead may result from another presently unknown demand for the cofactor at a disparate neuronal site.  相似文献   

16.
Neonatal changes in the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TrpH) and in the content of the co-factor, biopterin, were studied in rat midbrain for the first 20 days after birth. Changes in TH activity in the parotid and submandibular glands were also examined. Changes in TH activity per unit weight in the developing rat brain were briefly similar to those in the salivary glands; the activity increased from day 2 or 4 to day 9 after birth, and remained constant or slightly decreased at day 12, then rapidly increased on day 16. TrpH activity in the midbrain increased about twofold up to day 16. The biopterin concentration in the brain increased, reached a maximum level on day 12 after birth, and thereafter decreased. The effect of hyperthyroidism in rats given 0.2 mg/kg i.p. of thyroxine every 2 days postnatally was studied on the activity of TH in rat salivary glands at 12-day-old rats. In parotid or submandibular gland of hyperthyroid rats, TH activity increased at day 12 postnatally. In comparison with the effect on TH activity in the salivary glands, TH activity in the midbrain on day 20 postnatally was not induced by hyperthyroidism. Furthermore, increase of the TrpH activity and biopterin and catecholamine levels in the midbrain of hyperthyroid rats was not found on day 20 after birth in comparison with the corresponding controls. From these data, we suppose that postnatal hyperthyroidism may cause precocious induction of TH in rat salivary gland, but may not increase the activity of TH or TrpH, and the level of their co-factor, biopterin, in rat midbrain.  相似文献   

17.
(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.  相似文献   

18.
S Knapp  A J Mandell  W P Bullard 《Life sciences》1975,16(10):1583-1593
Using both radioisotopic and fluorometric techniques to measure the activity of midbrain soluble enzyme, we have demonstrated that calcium activates tryptophan hydroxylase. The observed activation apparently results from an increased affinity of the enzyme for both its substrate, tryptophan, and the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine (6-MPH4). The calcium activation of tryptophan hydroxylase appears to be specific for both enzyme and effector: other brain neurotransmitter biosynthetic enzymes, such as aromatic amino acid decarboxylase(s) and tyrosine hydroxylase, are not affected by calcium (at concentrations ranging from 0.01 mM to 2.0 mM); other divalent cations, such as Ba++, Mg++, and Mn++, have no activating effect on tryptophan hydroxylase. This work suggests that increases in brain serotonin biosynthesis induced by neural activation may be due to influx of Ca++ associated with membrane depolarization and resulting activation of nerve ending tryptophan hydroxylase.  相似文献   

19.
The role of the serotonin (5-hydroxytryptamine) autoreceptor in the regulation of the activity of tryptophan hydroxylase was investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measuring the accumulation of 5-hydroxytryptophan in the presence of inhibition of aromatic L-amino acid decarboxylase using 3-hydroxy-4-bromobenzyloxy-amine by HPLC with fluorescence detection. Serotonin and its agonists N,N-dimethyl-5-methoxytryptamine and 1-(m-chlorophenyl)-piperazine reduced the formation of 5-hydroxytryptophan to 50-60% at 10(-5) M. The effect of serotonin was reversed by 10(-5) M methiothepin, an antagonist of the serotonin autoreceptor. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), dose-dependently reduced the basal formation of 5-hydroxytryptophan to 40-50% at 10(-6) and 10(-4) M, respectively. W-7 also reduced the activated formation by A-23187 or dibutyryl cyclic AMP in a dose-dependent manner. W-7 had no effect on 5-hydroxytryptophan formation reduced by serotonin at 10(-5) M. These results suggest that the role of the serotonin autoreceptor was related to the prevention of the calcium-calmodulin-dependent activation of tryptophan hydroxylase.  相似文献   

20.
The activity of tryptophan hydroxylase, the key enzyme of serotonin biosynthesis, was determined in the brain of silver foxes and wild rats selected, according to domestic or aggressive behavior, in respect to man. Significant increase of enzyme activity in midbrain of both domesticated rats and domesticated foxes was found, in comparison with that of aggressive animals. It was suggested that genetic mechanisms of the selection according to aggressive behavior, involve the changes of genes responsible for the synthesis of serotonin, the brain neurotransmitter which inhibits this type of behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号