首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves.  相似文献   

2.
Turner NC 《Plant physiology》1975,55(5):932-936
Concurrent measurements of evaporation, leaf conductance, irradiance, leaf water potential, and osmotic potential of maize (Zea mays L. cv. Pa602A) in soil at either high or low soil water potential were compared at several hours on two consecutive days in July. Hourly evaporation, measured on two weighing lysimeters, was similar until 1000 hours Eastern Standard Time, but thereafter evaporation from the maize in the dry soil was always less than that in the wet soil; before noon it was 62% and by midafternoon, only 35% of that in the wet soil. The leaf water potential, measured with a pressure chamber, was between −1.2 and −2.5 bars and between −6.8 and −8 bars at sunrise (about 0530 hours Eastern Standard Time) in the plants in the wet and dry soil, respectively, but decreased quickly to between −8 and −13 bars in the plants in the wet soil and to less than −15 bars in the plants in the dry soil by 1100 to 1230 hours Eastern Standard Time. At this time, the leaf conductance of all leaves was less than 0.1 cm sec−1 in the maize in the dry soil, whereas the conductance was 0.3 to 0.4 cm sec−1 in the leaves near the top of the canopy in the wet soil. The osmotic potential, measured with a vapor pressure osmometer, also decreased during the morning but to a smaller degree than leaf water potential, so that by 1100 to 1230 hours Eastern Standard Time the leaf turgor potential was 1 to 2 bars in all plants. Thereafter, leaf turgor potential increased, particularly in the plants in soil at a high water potential, whereas leaf water potential continued to decrease even in the maize leaves with partly closed stomata. Evidently maize can have values of leaf conductance differing 3- to 4- fold at the same leaf turgor potential, which suggests that stomata do not respond primarily to bulk leaf turgor potential. Evidence for some osmotic adjustment in the plants at low soil water potential is presented. Although the degree of stomatal closure in the maize in dry soil did not prevent further development of stress, it did decrease evaporation in proportion to the decrease in canopy conductance.  相似文献   

3.
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.  相似文献   

4.
Water potentials induced by growth in soybean hypocotyls   总被引:17,自引:11,他引:6       下载免费PDF全文
Gradients in water potential form the driving force for the movement of water for cell enlargement. In stems, they are oriented radially around the vascular system but should also be present along the stem. To test this possibility, growth, water potential, osmotic potential, and turgor were determined at intervals along the length of dark-grown soybean (Glycine max L. Merr., cv. Wayne) hypocotyls. Transpiration was negligible in the dark, humid conditions, so that all water uptake was for growth. Elongation occurred in the terminal 1.5 centimeters of the hypocotyl. Water potential was −3.5 bars in the elongating region but −0.5 bar in the mature region, both in intact plants and detached tissue. There was a gradual transition between these values that was related to the growth profile along the hypocotyl. Tissue osmotic potentials generally paralleled tissue water potentials, so that turgor was the same throughout the length of the hypocotyl. If the elongating zone was excised, growth ceased immediately. If the elongating zone was excised along with mature tissue, however, growth continued, which confirmed the presence of a water-potential gradient that caused longitudinal water movement from the mature zone to the elongating zone. When the plants were grown in vermiculite having low water potentials, tissue water potentials and osmotic potentials both decreased, so that water potential gradients and turgor remained undiminished. It is concluded that growth-induced water potentials reflect the local activity for cell enlargement and are supported by appropriate osmotic potentials.  相似文献   

5.
The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 × 10−7 centimeters per second per bar down to 4.4 × 10−7 centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.  相似文献   

6.
Relationship of water potential to growth of leaves   总被引:33,自引:9,他引:24       下载免费PDF全文
Boyer JS 《Plant physiology》1968,43(7):1056-1062
A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of —1.5 to —2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.

Leaf growth occurred in sunflower only when leaf water potentials were above —3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

  相似文献   

7.
Wright JP  Fisher DB 《Plant physiology》1983,73(4):1042-1047
Severed aphid stylets were used to follow the kinetics of sieve tube turgor and osmotic pressure (π) responses following step changes in water potential applied to the cambial surface of willow (Salix exigua Nutt.) bark strips. The kinetics of the turgor response were monitored with a pressure transducer. In separate experiments, the kinetics of the π response were followed by freezing point determinations on stylet exudate. The sieve tube volumetric elastic modulus in the bark strips was about 21 bars, but may be higher in intact stems. The membrane hydraulic conductivity was about 5 × 10−3 centimeters per second per bar; several factors make it difficult to estimate its value accurately. Differences in the turgor pressure (P) and π responses, as well as the relatively more rapid initial turgor response to a water potential (ψ) change, suggested a time-dependent component in sieve tube wall elasticity.

Our observations were generally not supportive of the idea that sieve tubes might osmoregulate. However, the bark strip system may not be suitable for addressing that question.

Separate measurements of ψ, P, and π demonstrate that the relationship predicted by the fundamental cell water potential equation, ψ = P − π, is applicable within experimental error (± 0.4 bar) to sieve tube water relations.

  相似文献   

8.
Turner NC 《Plant physiology》1974,53(3):360-365
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), leaf resistance (r1), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. cv. Pa602A), sorghum (Sorghum bicolor [L.] Moench cv. RS 610), and tobacco (Nicotiana tabacum L. cv. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were low. The r1, measured with a ventilated diffusion porometer, of the leaves in the upper canopy decreased temporarily after sunrise [~0530 hours Eastern Standard Time] as I increased, but then r1 increased again between 0700 and 0830 hr Eastern Standard Time as the ψ, measured with a pressure chamber, decreased rapidly from the values of −7, −4 and −6 bars at sunrise to minimal values of −18, −22 and −15 bars near midday in the maize, sorghum, and tobacco, respectively. The π, measured with a vapor pressure osmometer, also decreased after sunrise, but not to the same degree as the decrease in ψ, so that a P of zero was reached in some leaves between 0730 and 0800 hours. The lower (more negative) π of leaves in the upper canopy than those in the lower canopy gave the upper leaves a higher P at a given ψ than the lower leaves in all three species; leaves at intermediate heights had an intermediate P. This difference between leaves at the three heights in the canopy was maintained at all values of ψ. The r1 remained unchanged over a wide range of P and then increased markedly at a P of 2 bars in maize, −1 bar in sorghum, and near zero P in tobacco: r1 also remained constant until ψ decreased to −17, −20, and −13 bars in leaves at intermediate heights in maize, sorghum, and tobacco, respectively. In all three species r1 of leaves in the upper canopy increased at more negative values of ψ than those at the base of the canopy, and in tobacco, leaves in the upper canopy wilted at more negative values of ψ than those in the lower canopy.  相似文献   

9.
A modified version of the osmotic shock technique was used to investigate HCO3 and OH transport in the alga Chara corallina. Cell turgor was brought close to zero and then restored. When turgor was reduced to near the plasmolytic point using an osmoticum, little effect was observed on H14CO3 assimilation and OH transport. However, when turgor was recovered in these cells, there was a large reduction in HCO3 and OH transport activity. In contrast, when cells were air-dried to zero turgor, and rewetted to restore turgor, no significant effect on OH transport was observed.  相似文献   

10.
The water transport properties of etiolated pea (Pisum sativum L.) internodes were studied using both dynamic and steady-state methods to determine (a) whether water transport through the growing tissue limits the rate of cell enlargement, and (b) whether auxin stimulates growth in part by increasing the hydraulic conductance of the growing tissue.

Measurements using the pressure probe technique showed that the hydraulic conductivity of cortical cell membranes was the same for both slowly growing and auxin-induced rapidly growing cells (membrane hydraulic conductivity, about 1.5 × 10−5 centimeters per second per bar). In a second technique which measured the rate of water movement through the entire pea internode, the half-time for radial water flow was about 60 seconds and was not altered by auxin application. These results indicate that auxin does not alter the hydraulic conductance of pea stem tissue, either at the cellular or the whole tissue level.

Measurements of the turgor pressure of cortical cells, combined with osmotic pressure measurements of expressed cell sap, show that the water potential of growing pea stems was about −3 bars. When the growth rate was altered by various treatments, including decapitation, auxin application, cold temperature, and KCN treatment, the water potential was independent of the growth rate of the stem. We attribute the depression of the water potential in young pea stems to the presence of solutes in the cell wall free space of the tissue. This interpretation is supported by the results of infiltration and perfusion experiments.

From the results of these dynamic and steady-state experiments, we conclude that the internal gradient in water potential (from the xylem to the epidermis) needed to sustain cell enlargement is small (no greater than 0.5 bar). Thus, the hydraulic conductance of the tissue is sufficiently large that it does not control or limit the rate of cell enlargement.

  相似文献   

11.
Stress-induced osmotic adjustment in growing regions of barley leaves   总被引:8,自引:11,他引:8       下载免费PDF全文
Young barley seedlings were stressed using nutrient solutions containing NaCl or polyethylene glycol and measurements were made of leaf growth, water potential, osmotic potential and turgor values of both growing (basal) and nongrowing (blade) tissues. Rapid growth responses similar to those noted for corn (Plant Physiology 48: 631-636) were obtained using either NaCl or polyethylene glycol treatments by which exposure of seedlings to solutions with water potential values of −3 to −11 bars effected an immediate cessation of leaf elongation with growth resumption after several minutes or hours. Latent periods were increased and growth resumption rates were decreased as water potential values of nutrient solutions were lowered. In unstressed transpiring seedlings, water potential and osmotic potential values of leaf basal tissues were usually −6 to −8 bars, and −12 to −14 bars, respectively. These tissues began to adjust osmotically when exposed to any of the osmotic solutions, and hourly reductions of 1 to 2 bars in both water potential and osmotic potential values usually occurred for the first 2 to 4 hours, but reduction rates thereafter were lower. When seedlings were exposed to solutions with water potential values lower than those of the leaf basal tissues, growth resumed about the time water potential values of those tissues fell to that of the nutrient solution. After 1 to 3 days of seedling exposure to solutions with different water potential values, cumulative leaf elongation was reduced as the water potential values of the root medium were lowered. Reductions in water potential and osmotic potential values of tissues in leaf basal regions paralleled growth reductions, but turgor value was largely unaffected by stress. In contrast, water potential, osmotic potential, and turgor values of leaf blades were usually changed slightly regardless of the degree and duration of stress, and blade water potential values were always higher than water potential values of the basally located cells. It is hypothesized that blades have high water potential values and are generally unresponsive to stress because water in most of the mesophyll cells in this area does not exchange readily with water present in the transpiration stream.  相似文献   

12.
Spatial distribution of turgor and root growth at low water potentials   总被引:29,自引:12,他引:17       下载免费PDF全文
Spatial distributions of turgor and longitudinal growth were compared in primary roots of maize (Zea mays L. cv FR27 × FRMo 17) growing in vermiculite at high (−0.02 megapascals) or low (−1.6 megapascals) water potential. Turgor was measured directly using a pressure probe in cells of the cortex and stele. At low water potential, turgor was greatly decreased in both tissues throughout the elongation zone. Despite this, longitudinal growth in the apical 2 millimeters was the same in the two treatments, as reported previously. These results indicate that the low water potential treatment caused large changes in cell wall yielding properties that contributed to the maintenance of root elongation. Further from the apex, longitudinal growth was inhibited at low water potential despite only slightly lower turgor than in the apical region. Therefore, the ability to adjust cell wall properties in response to low water potential may decrease with cell development.  相似文献   

13.
Sanders D 《Plant physiology》1981,67(6):1113-1118
The rate of Cl transport at the plasma membrane of the freshwater alga Chara corallina is investigated with respect to possible in vivo controls acting in addition to the two well established ones of cytoplasmic Cl and cytoplasmic pH. In contrast with results from many other plant tissues, halides appear to be the only anions capable of inhibiting Cl transport, either from the outside or inside surfaces of the plasma membrane. Cell turgor pressure was also investigated. It was found that neither the influx of Cl nor that of K+ or HCO2 is sensitive to turgor. Internal osmotic pressure is also insensitive to turgor, a situation contrasting with that in closely related brackish water charophytes.  相似文献   

14.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

15.
Boyer JS 《Plant physiology》1970,46(2):233-235
Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlargement was similar in all three species, and was large when leaf water potentials dropped to about −4 bars.  相似文献   

16.
Muskmelon (Cucumis melo L.) seeds are germinable 15 to 20 days before fruit maturity and are held at relatively high water content within the fruit, yet little precocious germination is observed. To investigate two possible factors preventing precocious germination, the inhibitory effects of abscisic acid and osmoticum on muskmelon seed germination were determined throughout development. Seeds were harvested at 5-day intervals from 30 to 65 days after anthesis (DAA) and incubated either fresh or after drying on factorial combinations of 0, 1, 3.3, 10, or 33 micromolar abscisic acid (ABA) and 0, −0.2, −0.4, −0.6, or −0.8 megapascals polyethylene glycol 8000 solutions at 30°C. Radicle emergence was scored at 12-hour intervals for 10 days. In the absence of ABA, the water potential (Ψ) required to inhibit fresh seed germination by 50% decreased from −0.3 to −0.8 megapascals between 30 and 60 DAA. The Ψ inside developing fruits was from 0.4 to 1.4 megapascals lower than that required for germination at all stages of development, indicating that the fruit Ψ is sufficiently low to prevent precocious germination. At 0 megapascal, the ABA concentration required to inhibit germination by 50% was approximately 10 micromolar up to 50 DAA and increased to >33 micromolar thereafter. Dehydration improved subsequent germination of immature seeds in ABA or low Ψ. There was a linear additive interaction between ABA and Ψ such that 10 micromolar ABA or −0.5 megapascal osmotic potential resulted in equivalent, and additive, reductions in germination rate and percentage of mature seeds. Abscisic acid had no effect on embryo solute potential or water content, but increased the apparent minimum turgor required for germination. ABA and osmoticum appear to influence germination rates and percentages by reducing the embryo growth potential (turgor in excess of a minimum threshold turgor) but via different mechanisms. Abscisic acid apparently increases the minimum turgor threshold, while low Ψ reduces turgor by reducing seed water content.  相似文献   

17.
Quantum yields were measured for CO2 fixation by sunflower (Helianthus annuus L.) leaves having various water potentials and for dichlorophenolindophenol photoreduction by chloroplasts isolated from similar leaves having various water potentials. In red radiation, the quantum yield for CO2 was 0.076 for an attached sunflower leaf at a water potential of −3 to −4 bars but was 0.020 for the same leaf at −15.3 bars. After recovery to a water potential of −5 bars, the quantum yield rose to 0.060. Soybean (Glycine max L. [Merr.]) leaves behaved similarly. Chloroplasts from a sunflower leaf with a water potential of −3.6 bars had a quantum yield for 4 equivalents of 0.079, but when tissue from the same leaf had a water potential of −14.8 bars, the quantum yield of the chloroplasts decreased to 0.028. The decrease could not be attributed to differences in rates of respiration by the leaves or the chlorophyll content or absorption spectrum of the leaves and chloroplasts.  相似文献   

18.
Sells GD  Koeppe DE 《Plant physiology》1981,68(5):1058-1063
Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates.  相似文献   

19.
The effect of cell turgor on sugar uptake in strawberry fruit cortex tissue   总被引:1,自引:0,他引:1  
A reduction in cell turgor has been shown to stimulate sugar uptake in several plant sink tissues and it may regulate the import of assimilate into the sink apoplast, as well as maintain cell turgor. To determine whether cell turgor influences sugar uptake by strawberry (Fragaria x ananassa Duch. cv. Brighton) fruit cortex tissue, disks were cut from greenhouse-grown primary fruit at the green-white stage of development and placed in buffered incubation solutions containing either mannitol or ethylene glycol as an osmoticum. Cell turgor of fruit disks was calculated from the difference between the water potential of bathing solution and tissue solute potential after incubation at various osmolarities. Cell turgor increased when tissue disks were placed into mannitol incubation solutions more dilute than the water potential of fresh tissue (about 415 mOsmol kg?1). The rate of uptake of [14C]-sucrose or [14C]-glucose decreased as osmolarity of the incubation solution increased, i.e. as cell turgor declined. Cell turgor and the rate of [14C]-sucrose uptake were unaffected when rapidly permeating ethylene glycol was used as an osmoticum. A decrease in cell turgor reduced both the Vmax of the saturable (carrier mediated) kinetic component of sucrose uptake, and the slope of the linear (diffusional) component. The sulfhydryl binding reagent p-chloromercuibenzenesulfonic acid, an inhibitor of the plasma membrane sucrose carrier, strongly inhibited only the saturable component of sucrose uptake. Increased uptake of the nonmetabolizable sugar, O-methyl-glucose, at high turgor was similar to that of glucose, indicating that carrier activity was influenced by cell turgor, not cell metabolism. Turgor did not influence efflux of [14C]-sucrose from disks and had no effect on cell viability. Strawberry fruit cells do not possess a sugar uptake system that is stimulated by a reduction in turgor.  相似文献   

20.
Keck RW  Boyer JS 《Plant physiology》1974,53(3):474-479
Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号