首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus, to Japanese larch, Larix kaempferi, seedlings was tested with inoculation experiments under nursery conditions. Water suspensions of nematodes (mixed stages cultured on Botrytis cinerea or dispersal fourth-stage juveniles (DJ4) extracted from the adult Japanese pine sawyer, Monochamus alternatus) were injected into the stems of 2- and 3-year-old Japanese larch and Japanese black pine, Pinus thunbergii, seedlings growing in a nursery. In another treatment, Japanese pine sawyer adults holding DJ4 were released under a net that covered the upper half of the seedlings. Regardless of nematode inoculation method, Japanese larch seedlings were as susceptible as Japanese black pine seedlings to B. xylophilus under nursery conditions. The rate of disease development was similar on larch and pine seedlings. Nematode population densities were lower in the stems of dead larch seedlings than in the stems of dead pine seedlings. Histopathological observations revealed that the distribution of nematodes in the stems of dead larch seedlings was mostly limited to the cortex, phloem and cambial zone. Traumatic resin canal formation was one of the most characteristic symptoms in larch seedlings which was dissimilar to that in pine seedlings.  相似文献   

2.
Fifty strains of bacteria were isolated from six isolates of the nematode Bursaphelenchus mucronatus (Bm) from China and Russia and identified using the BioMerieux Vitek 32 system. In bioassay, 3 bacterial strains showed the high levels of phytotoxin production while 19, 16, and 12 strains showed moderately, low and no phytotoxin production, respectively. Inoculation of 2-month-old Pinus thunbergii seedling with each of the six Bm isolates showed that the mean number of days from inoculation to death of 80% of the seedlings was significantly related to the ratio of the total number of bacterial strains for a nematode isolate to the number of pathogenic bacterial strains of the nematode isolate. The results of inoculation of 3-year-old P. thunbergii seedlings showed that inoculation with either axenic Bm (ABm) or axenic B. xylophilus (ABx) and the pathogenic bacterial strain together were essential for inducing pine wilt. These findings demonstrate that wilt symptoms caused by Bm conform to our earlier hypothesis (Zhao et al., 2003) that pine wilt disease, induced by certain Bx or Bm isolates, is caused by a complex of both the nematodes and their associated pathogenic bacteria. The results also account for the variation in pathogenicity of Bm populations from different parts of the world.  相似文献   

3.
Cellulases are pathogenic substances suspected to be responsible for the development of the early symptoms of nematode disease. The pine wood nematode, Bursaphelenchus xylophilus (Parasitaphelenchidae), is the causal agent of pine wilt disease, which kills millions of pine trees. We used RNA interference (RNAi), a reverse genetic tool, to analyze the function of the endo-β-1,4-glucanase gene of B. xylophilus, which causes the most serious forest tree disease in China and the rest of eastern Asia. Silencing of this gene was detected through real-time PCR and cellulase activity assays after soaking for 24 h in dsRNA. The cellulase gene silencing effects differed among various siRNAs. The propagation and dispersal ability of these nematodes decreased when the endo-β-1,4-glucanase gene was silenced. It is important to select an effective siRNA before performing an RNAi test.  相似文献   

4.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

5.
Mature trees of eastern white, jack, Scotch, and shortleaf pines were inoculated with 25,000-34,000 pinewood nematodes, Bursaphelenchus xylophilus, isolated from infected Scotch pines in Missouri. Equal numbers of trees of each species inoculated with distilled water served as controls. Nine of fifteen Scotch pines died within 4 months of nematode infection or during the winter and early spring following infection. A single eastern white and shortleaf pine died. No jack pines died. A single Scotch pine control died, apparently the result of natural nematode infection. No other controls died. Mean oleoresin flow did not differ among nematode-inoculated jack and shortleaf pines and their respective controls. Oleoresin flow in nematode-inoculated eastern white and Scotch pines was significantly lower than in their controls. Oleoresin flow was temporarily reduced in mortality-resistant eastern white and Scotch pines following nematode infection. Thus a sublethal impact of nematode infection on mortality-resistant host trees was documented.  相似文献   

6.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

7.
Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees.  相似文献   

8.
Kikuchi T  Jones JT  Aikawa T  Kosaka H  Ogura N 《FEBS letters》2004,572(1-3):201-205
We have characterized a family of GHF45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. The absence of such genes from other nematodes and their similarity to fungal genes suggests that they may have been acquired by horizontal gene transfer (HGT) from fungi. The cell wall degrading enzymes of other plant parasitic nematodes may have been acquired by HGT from bacteria. B. xylophilus is not directly related to other plant parasites and our data therefore suggest that horizontal transfer of cell wall degrading enzymes has played a key role in evolution of plant parasitism by nematodes on more than one occasion.  相似文献   

9.
10.
Abstract:  Transmission of the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner & Bührer) Nickle to Pinus pinaster Aiton branches through feeding wounds of its vector in Portugal, Monochamus galloprovincialis Olivier, was studied under laboratory conditions. All the B. xylophilus -infected beetles transmitted nematodes to branches they fed. The transmission was more frequent during the first 6 weeks after emergence, with transmission peaks during the second and the sixth week. The adult M. galloprovincialis transmitted nematodes for a mean of 5 weeks, independently of the beetle's sex or longevity. No relation was found between beetle feeding intensity and effective transmission of B. xylophilus to the branches. The nematode transmission ceased after the ninth week, even in insects which still had B. xylophilus on their bodies. The longevity of the nematode-free insects (control group) was slightly higher than the B. xylophilus -infected beetles, although with no significant difference. The results emphasize the necessity to control the immature stages of M. galloprovincialis prior to emergence and develop efficient strategies to capture and eliminate the recently emerged beetles, as majority of the nematode infection of healthy pine trees occurs during a short period of few weeks after beetle emergence.  相似文献   

11.
12.
We examined the amount of maturation feeding and transmission of pinewood nematodes, Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle (Nematoda: Parasitaphelenchidae), to healthy pine (Pinus spp.) trees by pine sawyer Monochamus alternatus Hope (Coleoptera: Cerambycidae) adults infected with Beauveria bassiana (Balsamo) Vuill. (Deuteromycotina: Hyphomycetes). Inoculated beetles fed less than noninoculated beetles, probably because feeding by inoculated beetles began to decrease at about 4 d postinoculation and inoculated beetles ceased to feed for several days before their death. In inoculated beetles carrying >1,000 nematodes, some beetles died before nematode departure. The remaining heavily nematode-infested beetles lived until the beginning of nematode departure, but they had stopped feeding, preventing the nematodes from entering pine twigs. We suggest that microbial control of pine sawyer adults by B. bassiana may be effective in preventing transmission of pine wilt disease to healthy pine trees.  相似文献   

13.
The transmission of Bursaphelenchus xylophilus from Monochamus alternatus males to Pinus densiflora trees via oviposition wounds has been determined. Nematode-infested males, with mandibles fixed experimentally to prevent feeding, were placed for 48 hours with pine bolts containing oviposition wounds that had been made by nematode-free females. After removal of the nematode-infested males, the pine bolts were held for 1 month and then examined for the presence of nematodes. Reproducing nematode populations were recovered from pine bolts that were exposed to male beetles carrying a high number of nematodes. No reproducing nematode population could be recovered from pine bolts exposed to beetles with a small number of nematodes. Nematode reproduction in the pine bolts was not related to the number of oviposition wounds per bolt. Fourth-stage dispersal B. xylophilus juveniles, collected from beetle body surfaces, were inoculated on pine bolt bark 0, 5, 10, and 15 cm away from a single artificial, small hole. These dauer juveniles successfully entered some bolts. The probability of successful nematode reproduction decreased with increased distance between inoculation point and artificial hole. The results indicated that B. xylophilus can move a significant distance to oviposition wounds along the bark surface and enter a tree via the wounds. The new transmission pathway is considered important for the nematode to persist in pine forests such as in North America where pine wilt disease does not occur.  相似文献   

14.
【目的】松材线虫是松树萎蔫病的病原,拟松材线虫在形态等方面与松材线虫极其相似。关于两种线虫与细菌的研究多集中于体表伴生细菌。本文要揭示松材线虫和拟松材线虫体内是否存在细菌。【方法】对松材线虫和拟松材线虫进行透射电镜观察;并采用1%升汞和抗菌素混合液对两种线虫虫体进行体表消毒后研磨,制备悬浮液涂布NA平板;通过生理生化测定和16S rDNA序列分析鉴定细菌种类。【结果】松材线虫和拟松材线虫透射电镜照片显示在两种线虫肠道内均发现细菌;体表无菌的松材线虫和拟松材线虫共分离到3株体内细菌;这3株细菌分别属于寡养单胞菌属(Stenotrophomonas)和爱文氏菌属(Ewingella)。【结论】松材线虫和拟松材线虫体内均存在细菌;这些细菌对这两种线虫可能具有一定的生理生态作用。本文是松材线虫和拟松材线虫体内存在细菌的首次报导。  相似文献   

15.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

16.
Four experiments were conducted using nematode-infested and nematode-free adults of the cerambycid beetle, Monochamus alternatus, to determine horizontal transmission pathways of Bursaphelenchus xylophilus. When nematode-infested beetles of one sex and nematode-free beetles of the opposite sex were paired in containers for 48 or 72 hours, the number of nematodes carried by nematode-free beetles tended to increase with increased number of nematodes carried by nematode-infested beetles. The nematodes acquired by "nematode-free" beetles could be transmitted to pine. A female beetle that received 13 nematodes from a male transmitted one nematode to a Pinus densiflora bolt via an oviposition wound. When the nematode-infested and nematode-free beetles were observed continuously, it was observed that the number of nematodes carried by nematode-free beetles at the end of the first sexual mounting increased as the number of nematodes carried by nematode-infested beetles just before mounting increased. The number of nematodes transferred to nematode-free beetles was positively related to duration time of mounting. There was no difference in transmission efficacy between male-to-female transmission and female-to-male transmission. The horizontal transmission pathways are discussed relative to the persistence of B. xylophilus in resistant pine forests and the control of pine wilt disease.  相似文献   

17.
Two nematicides, 4-hydroxyphenylacetic acid (4-HPA) (1) and oidiolactone D (2), were isolated from cultures of the fungus Oidiodendron sp., and their structures were identified by spectroscopic analyses. Compound 2 showed nematicidal activities against the root-lesion nematode, Pratylenchus penetrans, and the pine wood nematode, Bursaphelenchus xylophilus. Compound 1 was also active against these two nematodes but to a lesser extent.  相似文献   

18.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

19.
Ribosomal DNA region sequences (partial 18S, 28S and complete ITS1, 5.8S, and ITS2) of the pinewood nematode (Bursaphelenchus xylophilus) were obtained from DNA extracted directly from wood pieces collected from wilted pine trees throughout the Kyushu and Okinawa islands, Japan. Either a 2569bp or 2573bp sequence was obtained from 88 of 143 samples. Together with the 45 rDNA sequences of pinewood nematode isolates previously reported, there were eight single nucleotide polymorphisms and two indels of two bases. Based on these mutations, nine haplotypes were estimated. The haplotype frequencies differed among regions in Kyushu island (northwest, northeast and center, southeast, and southwest), and the distribution was consistent with the invasion and spreading routes of the pinewood nematode previously estimated from past records of pine wilt and wood importation. There was no significant difference in haplotype frequencies among the collection sites on Okinawa island.  相似文献   

20.
In order to facilitate the understanding of the actual process of enzyme-based degradation of nematodes, we visualized the localization of BLG4, a cuticle-degrading protease from the nematophagous bacterium Brevibacillus laterosporus G4, on nematode cuticle by using an improved immuno-labeled fluorescent method. Live nematodes, heat-killed nematodes and extracted nematode cuticles were exposed to the protease, and the localization of the protease and the resulting tissue degradation and destruction were observed microscopically. The bioassay findings showed that live nematodes were significantly more resistant to the protease than the dead nematodes and the extracted cuticles were. The observation of the immuno-labeling fluorescence for BLG4 revealed that the protease localized first in the tail region of the live target; and then spread over the entire target and ultimately destroyed it, including the cuticle. The results indicated the resistance of nematode cuticles to enzymatic attacks and the differences in protease susceptibilities at different regions on the nematode cuticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号