首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Backgrounds and aims

N rhizodeposition by legumes leads to enrichment of N in soils and in companion plants. N rhizodeposition can be divided into two major components, root exudation and root senescence. Our aim was to quantify N root exudation in white clover (Trifolium repens L.) through an estimation of short-term N rhizodeposition and to assess its impact on N transfer to companion perennial ryegrass (Lolium perenne L.) grown in mixture with clover.

Method

15N2 provided in the root atmosphere for 3 days was used to estimate transfer of symbiotically fixed nitrogen (SFN) to the growing medium by clover grown in pure stand and to ryegrass by clover grown in mixture for 2 months.

Results

The proportion of N rhizodeposited over the 3 days increased from 3.5 % of SFN in pure stand to 5.3 % in mixture. The 15N-enrichment of ammonium from the adhering substrate shows that a part of the rhizodeposited N was released in the form of ammonium. 4 % of the rhizodeposited N was taken up by ryegrass during the labelling period.

Conclusions

This study showed a significant contribution of root N exudation to the total N rhizodeposition of legumes and in the transfer of N to grasses.  相似文献   

2.

Background and aims

Phosphorus and nitrogen availability and forms are affected by soil properties as well as by plant species and further modulated by soil microbes. Additionally, close contact of the roots of two plant species may affect concentrations and forms of N and P. The aim of this study was to assess properties related to N and P cycling in the rhizosphere of wheat and legumes grown in monoculture or in wheat/legume mixtures in three soils differing in pH.

Methods

Faba bean, white lupin and wheat were grown in three soils differing in pH (4.8, 7.5 and 8.8) in monoculture or in mixed culture of wheat and legumes. Rhizosphere soil was collected at flowering and analyzed for P pools by sequential fractionation, available N as well as community structure of bacteria, fungi, ammonia oxidizers, N2-fixers and P mobilizers by polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE).

Results

Soil type was the major factor determining plant growth, rhizosphere nutrient dynamics and microbial community structure. Among the crop species, only faba bean had a significant effect on nitrification potential activity (PNA) in all three soils with lower activity compared to the unplanted soil. Soil type and plant spieces affected the community composition of ammonia-oxidizing archaea (AOB), ammonia-oxidizing archaea (AOA), N2-fixers (nifH), P mobilizers (ALP gene) and fungi, but not that of bacteria. Among the microbial groups, the AOA and nifH community composition were most strongly affected by crop species, cropping system and soil type, suggesting that these groups are quite sensitive to environmental conditions. All plants depleted some labile as well as non-labile P pools whereas the less labile organic P pools (NaOH extractable P pools, acid extractable P pools) accumulated in the rhizosphere of legumes. The pattern of depletion and accumulation of some P pools differed between monoculture and mixed culture as well as among soils.

Conclusions

Plant growth and rhizosphere properties were mainly affected by soil type, but also by crop species whereas cropping system had the least effect. Wheat and the legumes depleted less labile inorganic P pools in some soils whereas less labile organic P pools (NaOH extractable P, acid extractable P) accumulated in the rhizosphere of legumes.  相似文献   

3.
Background and aims

Legumes respond to PAH-contamination in a systemic manner and influence the overall rhizosphere microbial community structure, but the effect on the functional microbial community is unknown. In this study, plant-mediated PAH effects on specific bacterial taxa and the PAH-degraders in the rhizosphere were examined.

Methods

White clover was cultivated using a split-root system, with one side exposed to phenanthrene or pyrene, and the other side uncontaminated. Rhizosphere microbial diversity and activity were assessed with DGGE and qPCR, and changes in the root exudation were analyzed with GC-MS and HPLC.

Results

PAH contamination of one side of the rhizosphere significantly influenced the community structure of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Verrucomicrobia in the uncontaminated side of the rhizosphere. This indirect PAH-effect also influenced the diversity of bacterial PAH dioxygenase genes present, though the expression levels of these genes was not affected. No significant difference in the root exudation of general metabolites (amino acids, organic acids, sugars and sugar alcohols) and a flavonoid was observed.

Conclusions

In response to PAH-stress, white clover specifically influenced the diversity of the PAH-degrading community in its rhizosphere, but the abundance and activity of these PAH-degraders was not enhanced by the indirect PAH-effect. The plant-mediated response therefore does not appear to be directed towards enhanced removal of PAH for plant protection.

  相似文献   

4.

Aims

In the present study, we analysed the diversity of indigenous arbuscular mycorrhizal fungi (AMF) colonising both the roots and rhizosphere soil of an annual herbaceous species, Bromus rubens, and a perennial herbaceous species, Brachypodium retusum, co-occurring in the same Mediterranean, semiarid degraded area. The intention was to study whether these two species promoted the diversity of AM fungi in their rhizospheres differently and to ascertain whether the AMF community harboured by an annual plant species differed from that harboured by a perennial species when both grew in the same place.

Methods

The AMF large subunit ribosomal RNA genes (LSU) were subjected to nested PCR, cloning, sequencing and phylogenetic analysis.

Results

Twenty AMF sequence types belonging to Glomus group A, Glomus group B and Diversispora were identified. The two plant species differed in the AMF community composition in their roots, B. rubens showing a higher diversity of AMF than B. retusum. However the composition of the AMF communities associated with the two rhizosphere soils was similar.

Conclusions

These results suggest that the management of these Mediterranean, semiarid degraded areas should include the promotion of annual herbaceous plant communities in order to maintain the sustainability and productivity of these ecosystems.  相似文献   

5.

Background and aim

Symbiotic dinitrogen (N2) fixation is the most important external N source in organic systems. Our objective was to compare symbiotic N2 fixation of clover grown in organically and conventionally cropped grass-clover leys, while taking into account nutrient supply gradients.

Methods

We studied leys of a 30-year-old field experiment over 2 years in order to compare organic and conventional systems at two fertilization levels. Using 15N natural abundance methods, we determined the proportion of N derived from the atmosphere (PNdfa), the amount of Ndfa (ANdfa), and the transfer of clover N to grasses for both red clover (Trifolium pratense L.) and white clover (Trifolium repens L.).

Results

In all treatments and both years, PNdfa was high (83 to 91 %), indicating that the N2 fixation process is not constrained, even not in the strongly nutrient deficient non-fertilized control treatment. Annual ANdfa in harvested clover biomass ranged from 6 to 16 g?N m?2. At typical fertilizer input levels, lower sward yield in organic than those in conventional treatments had no effect on ANdfa because of organic treatments had greater clover proportions. In two-year-old leys, on average, 51 % of N taken up by grasses was transferred from clover.

Conclusion

Both, organically and conventionally cropped grass-clover leys profited from symbiotic N2 fixation, with high PNdfa, and important transfer of clover N to grasses, provided sufficient potassium- and phosphorus-availability to sustain clover biomass production.  相似文献   

6.

Background and aims

Soil aggregate stability depends on plant community properties, such as functional group composition, diversity and biomass production. However, little is known about the relative importance of these drivers and the role of soil organisms in mediating plant community effects.

Methods

We studied soil aggregate stability in an experimental grassland plant diversity gradient and considered several explanatory variables to mechanistically explain effects of plant diversity and plant functional group composition. Three soil aggregate stability measures (slaking, mechanical breakdown and microcracking) were considered in path analyses.

Results

Soil aggregate stability increased significantly from monocultures to plant species mixtures and in the presence of grasses, while it decreased in the presence of legumes, though effects differed somewhat between soil aggregate stability measures. Using path analysis plant community effects could be explained by variations in root biomass, soil microbial biomass, soil organic carbon concentrations (all positive relationships), and earthworm biomass (negative relationship with mechanical breakdown).

Conclusions

The present study identified important drivers of plant community effects on soil aggregate stability. The effects of root biomass, soil microbial biomass, and soil organic carbon concentrations were largely consistent across plant diversity levels suggesting that the mechanisms identified are of general relevance.  相似文献   

7.

Aims

The goal of this study was to investigate the structure and functional potential of microbial communities associated with healthy and diseased tomato rhizospheres.

Methods

Composition changes in the bacterial communities inhabiting the rhizospheric soil and roots of tomato plants were detected using 454 pyrosequencing. Microbial functional diversity was investigated with BIOLOG technology.

Results

There were significant shifts in the microbial composition of diseased samples compared with healthy samples, which had the highest bacterial diversity. The predominant phylum in both diseased and healthy samples was Proteobacteria, which accounted for 35.7–97.4 % of species. The class Gammaproteobacteria was more abundant in healthy than in diseased samples, while the Alphaproteobacteria and Betaproteobacteria were more abundant in diseased samples. The proportions of pathogenic Ralstonia solanacearum and Actinobacteria species were also elevated in diseased samples. The proportions of the various bacterial populations showed a similar trend both in rhizosphere soil and plant roots in diseased versus disease-free samples, indicating that pathogen infection altered the composition of bacterial communities in both plant and soil samples. In terms of microbial activity, functional diversity was suppressed in diseased soil samples. Soil enzyme activity, including urease, alkaline phosphatase and catalase activity, also declined.

Conclusions

This is the first report that provides evidence that R. solanacearum infection elicits shifts in the composition and functional potential of microbial communities in a continuous-cropping tomato operation.  相似文献   

8.

Background and aims

Plant breeding activities shape the rhizosphere microbiome but less is known about the relationship of both with the seed microbiome. We analyzed the composition of bacterial communities of seeds and rhizospheres of Styrian oil pumpkin genotypes in comparison to bulk soil to elucidate specific microbial signatures to support a concept involving plant-microbe interactions in breeding strategies.

Methods

The seed and rhizosphere microbiomes of 14 genotypes of oilseed pumpkin and relatives were analyzed using a 16S rRNA gene amplicon sequencing approach, which was assessed by bioinformatics and statistical methods.

Results

All analyzed microhabitats were characterized by diverse bacterial communities, but the relative proportions of phyla and the overall diversity was different. Seed microbiomes were characterized by the lowest diversity and dominant members of Enterobacteriaceae including potential pathogens (Erwinia, Pectobacterium). Potential plant-beneficial bacteria like Lysobacter, Paenibacillus and Lactococcus contributed to the microbial communities in significant abundances. Interestingly, strong genotype-specific microbiomes were detected for seeds but not for the rhizospheres.

Conclusions

Our study indicates a strong impact of the Cucurbita pepo genotype on the composition of the seed microbiome. This should be considered in breeding of new cultivars that are more capable of exploiting beneficial indigenous microbial communities.
  相似文献   

9.

Background and aims

The Tehuacán-Cuitcatlán reserve is an area of unique plant biodiversity mostly in the form of xerophytes, with exceptionally high numbers of rare and endemic species. This endemism results partly from the characteristics of the climate of this area, with two distinct seasons: rainy and dry seasons. Although rhizosphere communities must be critical in the function of this ecosystem, understanding the structure of these communities is currently limited. This is the first molecular study of the microbial diversity present in the rhizosphere of Mamillaria carnea.

Methods

Total DNA was obtained from soil and rhizosphere samples at three locations in the Tehuacán Cuicatlán Reserve, during dry and rainy seasons. Temperature gradient gel electrophoresisis (TGGE) fingerprinting, 16S rRNA gene libraries and pyrosequencing were used to investigate bacterial diversity in the rhizosphere of Mammillaria carnea and changes in the microbial community between seasons.

Results

Deep sequencing data reveal a higher level of biodiversity in the dry season. Statistical analyses based on these data indicates that the composition of the bacterial community differed between both seasons affecting to members of the phyla Acidobacteria, Cyanobacteria, Gemmatimonadetes, Plantomycetes, Actinobacteria and Firmicutes. In addition, the depth of sequencing performed (>24,000 reads) enables detection of changes in the relative abundance of lower bacterial taxa (novel bacterial phylotypes) indicative of the increase of specific bacterial populations due to the season.

Conclusions

This study states the basis of the bacterial diversity in the rhizosphere of cacti in semi-arid environments and it is a sequence-based demonstration of community shifts in different seasons.  相似文献   

10.

Background and aims

Members of the genus Pseudomonas are common inhabitants of rhizospheres and soils, and it is known that soil types and crop species influence their population density and structure. 20?×?106 ha are cultivated under no-tillage in Argentina and there is a need to find new biologically-based soil quality indexes to distinguish between sustainable and non-sustainable agricultural practices. Pseudomonads abundance and community structure were analyzed in no-till soils with different agricultural practices, in productive fields along 400 km of Argentinean Pampas.

Methods

We sampled soils and root systems from agricultural plots in which sustainable or non-sustainable agricultural practices have been applied. Samples were collected in summer and winter during 2010 and 2011. Culturable fluorescent and total pseudomonads were enumerated by plating on Gould’s selective medium S1. Colonies from these plates served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA.

Results

Abundance of total and fluorescent culturable pseudomonads in bulk soils was influenced by seasonal changes and agricultural practices. Rhizospheric counts from the same crop were affected by agricultural treatments. Also, crop species influenced pseudomonads density in the rhizosphere. Combined PCR-RFLP profile of both genes showed a seasonal grouping of samples.

Conclusions

Sustainable soil management seems to promote pseudomonads development in soils, favoring root colonization of crops from those plots. Crop species influence total pseudomonads load of rhizospheres and its community structure. Total or relative pseudomonads load could function as soil quality indicator of good agricultural practices.  相似文献   

11.

Background and aims

We report on the modifications induced by the roots of Erica arborea L. on a soil derived from alkaline and fine-textured marine sediments.

Methods

Physical, chemical, mineralogical and biochemical properties of bulk soil and of the rhizosphere of Erica were characterised to evaluate its role on soil development.

Results

Once the upper horizons had been decarbonated because of geomorphic and pedogenic processes, Erica colonised the soil and progressively modified it through the activity of roots. In the upper horizons, there was no difference between rhizosphere and bulk soil for pH, organic C and exchangeable Al and H. At depth, pH, organic C and exchangeable Al and H differed between rhizosphere and bulk soil. The weathering reactions induced by the Erica roots caused a relative quartz enrichment in the rhizosphere compared with the bulk soil. In the E, EB and Bw horizons, the microbial community of the rhizosphere appeared better adapted than in the underlying 2Bw horizons, where the rhizospheric microorganisms were poorly adapted as these horizons represented the boundary between acid and sub-alkaline soil environments.

Conclusions

The activity of Erica roots modified soil properties so to produce more favourable conditions for itself and the rhizosphere microflora.  相似文献   

12.

Aims

Aluminum-tolerant wheat plants often produce more root exudates such as malate and phosphate than aluminum-sensitive ones under aluminum (Al) stress, which provides environmental differences for microorganism growth in their rhizosphere soils. This study investigated whether soil bacterial community composition and abundance can be affected by wheat plants with different Al tolerance.

Methods

Two wheat varieties, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive), were grown for 60 days in acidic soils amended with or without CaCO3. Plant growth, soil pH, exchangeable Al content, bacterial community composition and abundance were investigated.

Results

Atlas 66 showed better growth and lower rhizosphere soil pH than Scout 66 irrespective of CaCO3 amendment or not, while there was no significant difference in the exchangeable Al content of rhizosphere soil between the two wheat lines. The dominant bacterial community composition and abundance in rhizosphere soils did not differ between Atlas 66 and Scout 66, although the bacterial abundance in rhizosphere soil of both wheat lines was significantly higher than that in bulk soil. Sphingobacteriales, Clostridiales, Burkholderiales and Acidobacteriales were the dominant bacteria phylotypes.

Conclusions

The difference in wheat Al tolerance does not induce the changes in the dominant bacterial community composition or abundance in the rhizosphere soils.  相似文献   

13.

Purpose

Understanding of the role of low molecular weight organic anions (OAs) in structuring rhizosphere microbial communities in situ is limited due to challenges associated with sampling. Improved techniques are needed for such studies.

Methods

This study used in situ and destructive sampling techniques and compared two exudate extraction methods [anion exchange membrane (AEM) capturing and water extraction] from rhizosphere and non-rhizosphere samples of genetically modified (GM) and control Pinus radiata D. Don trees grown in large-scale rhizotrons for ~10?months. Metabolically active soil microbial communities were analysed using rRNA-DGGE.

Results

Recovery of eight out of 12 anions was influenced by extraction methods, and in situ sampling using AEM was shown to be the most efficient method. Only minor differences were detected in OAs in root exudates collected from the GM and control trees. Significant differences in α-Proteobacterial and Pseudomonas communities were associated with the two tree lines in the topsoil at both sampling events. Additional differences in β-Proteobacterial and fungal communities between tree lines were detected in the rhizosphere using destructive sampling.

Conclusion

This study demonstrated that in situ sampling was superior to destructive sampling for the efficient collection of root exudates and analysis of associated rhizosphere microbial communities.  相似文献   

14.

Background and Aims

Current agricultural practices are based on growing monocultures or binary mixtures over large areas, with a resultant impoverishing effect on biodiversity at several trophic levels. The effects of increasing the biodiversity of a sward mixture on dry matter yield and unsown species invasion were studied.

Methods

A field experiment involving four grassland species [two grasses – perennial ryegrass (Lolium perenne) and cocksfoot (Dactylis glomerata) – and two legumes – red clover (Trifolium pratense) and white clover (Trifolium repens)], grown in monocultures and mixtures in accordance with a simplex design, was carried out. The legumes were included either as single varieties or as one of two broad genetic-base composites. The experiment was harvested three times a year over three years; dry matter yield and yield of unsown species were determined at each harvest. Yields of individual species and interactions between all species present were estimated through a statistical modelling approach.

Key Results

Species diversity produced a strong positive yield effect that resulted in transgressive over-yielding in the second and third years. Using broad genetic-base composites of the legumes had a small impact on yield and species interactions. Invasion by unsown species was strongly reduced by species diversity, but species identity was also important. Cocksfoot and white clover (with the exception of one broad genetic-base composite) reduced invasion, while red clover was the most invaded species.

Conclusions

The results show that it is possible to increase, and stabilize, the yield of a grassland crop and reduce invasion by unsown species by increasing its species diversity.Key words: Cocksfoot, Dactylis glomerata, diversity effect, invasion, legumes, perennial ryegrass, Lolium perenne, red clover, Trifolium pratense, simplex design, statistical modelling, transgressive over-yielding, white clover, T. repens  相似文献   

15.

Background and aims

Vineyards harbour a variety of weeds, which are usually controlled since they compete with grapevines for water and nutrients. However, weed plants may host groups of fungi and bacteria exerting important functions.

Methods

We grew three different common vineyard weeds (Taraxacum officinalis, Trifolium repens and Poa trivialis) in four different soils to investigate the effects of weeds and soil type on bacterial and fungal communities colonising bulk soil, rhizosphere and root compartments. Measurements were made using the cultivation-independent technique Automated Ribosomal Intergenic Spacer Analysis (ARISA).

Results

Weeds have a substantial effect on roots but less impact on the rhizosphere and bulk soil, while soil type affects all three compartments, in particular the bulk soil community. The fungal, but not the bacterial, bulk soil community structure was affected by the plants at the late experimental stage. Root communities contained a smaller number of Operational Taxonomic Units (OTUs) and different bacterial and fungal structures compared with rhizosphere and bulk soil communities.

Conclusions

Weed effect is localised to the rhizosphere and does not extend to bulk soil in the case of bacteria, although the structure of fungal communities in the bulk soil may be influenced by some weed plants.  相似文献   

16.

Aims

The research aimed at studying the effect of flooding with sulfate-rich water on the activity, abundance and diversity of sulfate-reducing micro-organisms present in the root zone of an oxygen-releasing plant growing on two riparian grassland soils with contrasting amounts of iron.

Methods

A series of microcosms was used to investigate the effects. Plants were grown under controlled conditions in microcosms containing a rhizosphere and bulk soil compartment for a period of 12 weeks in the presence of sulfate-rich flood water. Molybdate-treated systems served as non-sulfate-reducing controls.

Results

At harvest, activity and numbers of sulfate-reducing micro-organisms were higher in the absence of molybdate, but a rhizosphere effect and an impact of the presence of high levels of iron were not observed on activity and numbers. Both soils had in common a diverse community of sulfate-reducing micro-organisms covering all major cultured bacterial taxa. The appearance of members of the Desulfovibrionaceae exclusively in the rhizosphere of G. maxima was the only unambiguous indication of a plant effect.

Conclusion

The presence of sulfate-rich flood water stimulated the activity and growth of a part of the sulfate-reducing community leading to a change in community composition. The proximity of aerenchymatous plant roots and the abundance of iron in the soil had a negligible effect on the sulfate-reducing community.  相似文献   

17.

Background and aims

Replant problems or soil sickness are known phenomena but still unsolved. The aims of this study were (i) to set up a test system for detecting replant problems using in vitro propagated apple rootstocks (M26) based on different soil disinfection treatments and (ii) to explore the treatment effects on root morphology and soil microbial community structure.

Methods

The bio-test involved soil with apple replant problems (apple sick) and healthy soil from an adjacent plot, both either untreated, or submitted to treatments of 50 and 100 °C, or the chemical soil disinfectant Basamid. Histological analyses of roots and denaturing gradient gel electrophoresis (DGGE) fingerprints in rhizosphere soil collected at the final evaluation were performed.

Results

After 10 weeks, shoot dry mass on apple sick soil was 79, 108 and 124 % higher for soil treated at 50 °C, 100 °C and with Basamid, respectively, compared to the untreated soil. Roots in untreated apple sick soil showed destroyed epidermal and cortical layers. DGGE fingerprints revealed treatment dependent differences in community composition and relative abundance of total bacteria, Bacillus, Pseudomonas and total fungi.

Conclusions

The clear differences detected in soil microbial communities are the first steps towards a better understanding of the causes for apple replant problems.  相似文献   

18.
No-till reduces global warming potential in a subtropical Ferralsol   总被引:1,自引:0,他引:1  

Aims

We investigated the link between tree community composition and soil microbial community biomass and structure in central-eastern Spain.

Methods

The effects of the forest stand composition on the soil organic matter dynamics and on the structure and activity of the soil microbial community have been determined using phospholipid fatty acid profiles and soil enzymatic activities.

Results

The soil and litter N and C contents were higher in Pinus nigra Arn. ssp. salzmannii and Quercus ilex mixed forest stands (SBHO) and in long-term unmanaged Pinus nigra Arn. ssp. salzmannii forest stands (SBPC) than in pure Pinus nigra Arn. ssp. salzmannii forest stands (SBPA) and Pinus nigra Arn. ssp. salzmannii and Juniperus thurifera mixed forest stands (SBSJ). The bacterial biomass was significantly higher in SBSJ and SBPA than in SBPC and SBHO. The results show an uncoupling of the soil microbial biomass and its activity. pH is related to microbial biomass and its community structure under a Mediterranean humid climate.

Conclusions

The tree species seem to affect the biomass of the soil microbial community and its structure. The pH, but not the C/N ratio, is a factor influencing the microbial dynamics, biomass, and community structure.  相似文献   

19.

Background and aims

Condensed tannins, a dominant class of plant secondary metabolites, play potentially important roles in plant-soil feedbacks by influencing the soil microbial community. Effects of condensed tannins on the soil microbial community and activity were examined by a short-term tannin-addition experiment under field and laboratory conditions.

Methods

Condensed tannins were extracted from the leaves of a dominant conifer (Dacrydium gracilis) in a tropical montane forest on Mt. Kinabalu, Borneo. The extracted tannins were added to soils beneath the conifer and a dominant broadleaf (Lithocarpus clementianus) to evaluate the dependence of the response to tannin addition on the initial composition of the soil microbial community.

Results

Enzyme activities in the field tannin-addition treatment were lower than in the deionized-water treatment. Carbon and nitrogen mineralization were also inhibited by tannin-addition. The fungi-to-bacteria ratio after tannin-addition was higher compared with the distilled-water treatment in the laboratory experiment.

Conclusions

Based on our results, we suggest that the higher concentration of condensed tannins in the leaf tissues of Dacrydium than in those of Lithocarpus is a factor influencing the microbial community and activity. This may have influences on subsequent plant performance, which induces plant-soil feedback processes that can control dynamics of the tropical montane forest ecosystem.  相似文献   

20.

Aims

To study the relationship between vegetation development and changes in the soil microbial community during primary succession in a volcanic desert, we examined successional changes in microbial respiration, biomass, and community structure in a volcanic desert on Mount Fuji, Japan.

Methods

Soil samples were collected from six successional stages, including isolated island-like plant communities. We measured microbial respiration and performed phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE) analysis, and community-level physiological profile (CLPP) analysis using Biolog microplates.

Results

Microbial biomass (total PLFA content) increased during plant succession and was positively correlated with soil properties including soil water and soil organic matter (SOM) contents. The microbial respiration rate per unit biomass decreased during succession. Nonmetric multidimensional scaling based on the PLFA, DGGE, and CLPP analyses showed a substantial shift in microbial community structure as a result of initial colonization by the pioneer herb Polygonum cuspidatum and subsequent colonization by Larix kaempferi into central areas of island-like communities. These shifts in microbial community structure probably reflect differences in SOM quality.

Conclusions

Microbial succession in the volcanic desert of Mt. Fuji was initially strongly affected by colonization of the pioneer herbaceous plant (P. cuspidatum) associated with substantial changes in the soil environment. Subsequent changes in vegetation, including the invasion of shrubs such as L. kaempferi, also affected the microbial community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号