共查询到20条相似文献,搜索用时 15 毫秒
1.
《Microbes and infection / Institut Pasteur》2020,22(6-7):263-271
Influenza continues to be a significant public health challenge. Two glycoproteins on the surface of influenza virus, hemagglutinin and neuraminidase, play a prominent role in the process of influenza virus infection and release. Monoclonal antibodies targeting glycoproteins can effectively prevent the spread of the virus. In this review, we summarized currently reported human monoclonal antibodies targeting glycoproteins of influenza A and B viruses. 相似文献
2.
In this study, we use the cross-impact analysis to define the relationship among impact, mutation, and outbreak of bird flu. Then we use the distribution rank, which is developed by us over last several years, to quantify the mutations from amino acid sequences of 134 hemagglutinins and 97 neuraminidases. With the help of Bayesian equation, we calculate the probability of occurring of mutation in H5, H6, and H9 hemagglutinins, and N1 and N2 neuraminidases. Finally, we estimate the probability of occurring of mutation with different intensities of an impact. Although we have no means to predict an impact, which is severe enough to lead to the mutations in hemagglutinins and neuraminidases resulting in the outbreak of bird flu, we can in principle monitor the changes in distribution rank along the time course, and predict the trend of mutations, even to predict the degree of outbreak of bird flu. 相似文献
3.
血凝素(Hemagglutinin,HA)是流感病毒的主要表面抗原之一,诱导机体产生中和抗体,介导病毒囊膜与靶细胞膜融合,从而启动病毒对宿主细胞的感染过程。HA蛋白以前体形式合成,需经宿主蛋白酶水解为HA1、HA2两个亚单位,并以二硫键连接,病毒才获得感染性。研究表明宿主蛋白酶的分布与流感病毒感染后的致病力和组织嗜性有直接关系。潜在的裂解酶及其抑制因子的发现为流感的防治提供了新的思路,成为干预治疗的新潜在靶点。就当前国内外关于流感病毒血凝素的结构与功能、裂解机制及其应用的研究进展进行综述。 相似文献
4.
《Bioorganic & medicinal chemistry》2019,27(23):115147
Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry. 相似文献
5.
本研究自行设计合成两对特异性引物,通过RT-PCR扩增出1株鸽源H5N1亚型禽流感病毒血凝素(HA)和神经氨酸酶(NA)两个基因的cDNA片段,将它们成功克隆于pMD18-T载体上,然后进行序列测定。结果表明,HA基因全长1707bp,编码568个氨基酸, HA基因有7个糖基化位点,在裂解位点附近有连续6个碱性氨基酸(R-R-R-K-K-R)的插入,具有高致病性毒株的分子特征。受体结合位点的氨基酸分别为YWIHELY,左侧壁氨基酸为SGVSSA,右侧壁为NGQSGR;NA基因全长1350bp,编码446个氨基酸,NA基因有3个糖基化位点。 相似文献
6.
7.
Inhibition of influenza A virus sialidase activity by sulfatide 总被引:4,自引:0,他引:4
Suzuki T Takahashi T Nishinaka D Murakami M Fujii S Hidari KI Miyamoto D Li YT Suzuki Y 《FEBS letters》2003,553(3):355-359
Sulfatide, which binds to influenza A viruses and prevents the viral infection, was found to inhibit the sialidase activities of influenza A viruses in a pH-dependent manner. The kinetic parameters of the effect of sulfatide on the sialidase activities of human influenza A viruses using fluorometric assay indicated that sulfatide was a powerful and non-competitive type inhibitor in low-pH conditions. 相似文献
8.
流感病毒血凝素基因、神经氨酸酶基因在小鼠中的免疫效果观察 总被引:3,自引:0,他引:3
流感病毒血凝素基因,神经氨酸酶基因免疫BALB/c小鼠,获得特异阳性抗体反应,抗体滴度与基因免疫量呈正相关性,各实验组免疫小鼠抗同型流感病毒攻击存活率为100%,血凝素基因免疫小鼠抗异型流感病毒攻击存活率为100%,神经氨酸酶基因免疫小鼠抗异型流感病毒攻击存活率为75%,血凝素基因与神经氨酸酶基因联合免疫小鼠抗异型流感病毒攻击存活率为100%。 相似文献
9.
Sialyl oligosaccharides have long been considered to be the sole receptors for influenza virus. However, according to [1]
some viruses are able to grow in sialic-free MDCK cells. Here we attempted to reveal a possible second, non-sialic receptor,
hypothesizing the involvement of additional carbohydrate lectin recognition in influenza virus reception process, first of
all in situations when a lectin of the host cell could recognize the viral carbohydrate ligand. We tested the presence of
galactose- and sialic acid-binding lectins, as well as mannoside- and sulfo-N-acetyllactosamine-recognizing properties of MDCK and Vero cells using polyacrylamide neoglycoconjugates and antibodies. MDCK
cells bind galactoside probes stronger than Vero cells, whereas Vero cells bind preferentially sialoside, mannoside and various
sulfo-oligosaccharide probes. The probing of viruses with the neoglycoconjugates revealed specific 6′-HSO 3 LacNAc (but not other sulfated oligosaccharides) binding property of A and B human strains. Affinity of 6′-HSO 3 LacNAc probe was comparable with affinity of 6′-SiaLac probe but the binding was not inhibited by the sialooligosaccharide. 相似文献
10.
Kyoji Hagiwara Atsushi Ueda Kazunori Yamada Hideo Goto Tadashi Nakata Yoko Aida 《Biochemical and biophysical research communications》2010,394(3):721-727
The nucleoprotein (NP) of the influenza virus is expressed in the early stage of infection and plays important roles in numerous steps of viral replication. NP is relatively well conserved compared with viral surface spike proteins. This study experimentally demonstrates that NP is a novel target for the development of new antiviral drugs against the influenza virus. First, artificial analogs of mycalamide A in a chemical array bound specifically with high affinity to NP. Second, the compounds inhibited multiplication of the influenza virus. Furthermore, surface plasmon resonance imaging experiments demonstrated that the binding activity of each compound to NP correlated with its antiviral activity. Finally, it was shown that these compounds bound NP within the N-terminal 110-amino acid region but their binding abilities were dramatically reduced when the N-terminal 13-amino acid tail was deleted, suggesting that the compounds might bind to this region, which mediates the nuclear transport of NP and its binding to viral RNA. These data suggest that compound binding to the N-terminal 13-amino acid tail region may inhibit viral replication by inhibiting the functions of NP. Collectively, these results strongly suggest that chemical arrays are convenient tools for the screening of viral product inhibitors. 相似文献
11.
Thanyada Rungrotmongkol Pathumwadee Intharathep Nadtanet Nunthaboot Pornthep Sompornpisut Yong Poovorawan 《Biochemical and biophysical research communications》2009,385(3):390-394
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes. 相似文献
12.
Postel A Letzel T Müller F Ehricht R Pourquier P Dauber M Grund C Beer M Harder TC 《Analytical biochemistry》2011,(1):49-31
There is an urgent need for robust subtype-specific serological tests to diagnose influenza A virus infections in poultry and mammals, including humans. Such assays require reliable subtype-specific sources of soluble and authentically folded seroreactive hemagglutinin (HA), one of the integral membrane proteins that determine the serological subtype of influenza viruses. To this purpose, a bigenic pFastBacDual baculovirus transfer vector allowing efficient in vivo biotinylation of soluble HA homo-oligomers expressed via the secretory pathway was developed. An Avi-Tag allowed site-specific biotinylation by a coexpressed genetically modified BirA biotin ligase retained in the endoplasmic reticulum (ER). Highly seroreactive mono-biotinylated HA of recent H5 and H7 influenza A subtypes was secreted from recombinant baculovirus infected High-Five insect cells at levels sufficient to directly load streptavidin-coated enzyme-linked immunosorbent assay (ELISA) matrices, thereby avoiding any purification steps. The recombinant antigens retained authentic antigenicity, including conformation-dependent epitopes involved in hemagglutination inhibition as detected by monoclonal antibodies. This is the first bigenic in vivo biotinylation system established for use in insect cells with secretable recombinant membrane proteins biotinylated by an ER-retained variant of BirA biotin ligase. The proposed technique is expected to significantly increase flexibility in the design of subtype-specific assays, thereby expanding the power of influenza A virus serodiagnosis. 相似文献
13.
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. 相似文献
14.
本文通过比较2011年分离培养的1株季节性甲型H1N1流行性感冒(简称流感)病毒(A/Shanghai/1167/2011(H1N1))与历年季节性甲型H1N1流感病毒的血凝素(HA)基因,追溯该病毒的基因变异与来源,探讨该毒株的出现对流感防控工作的意义.采用反转录-聚合酶链反应(RT-PCR)方法扩增病毒的HA和神经氨酸酶(NA)片段,并进行测序;应用分子生物学软件对获得的序列进行分析,绘制基因进化树;同时,通过血凝抑制试验检测2011年下半年健康人群中该流感病毒的抗体水平.结果显示,A/Shanghai/1167/2011(H1N1)的HA基因序列与世界卫生组织(WHO)2007~2008年季节性甲型H1N1流感病毒疫苗株A/Brisbane/59/2007(H1N1)最接近,同源性达99.2%,与新型甲型H1N1流感病毒A/California/07/2009疫苗株同源性仅为72.4%.其HA基因裂解位点为PSIQSR↓GLF,尚未出现高致病性的分子特征.HA片段共编码557个氨基酸,有9个潜在的糖基化位点,序列与2009年前WHO疫苗株A/NewCaledonia/20/1999(H1N1)、A/SolomonIslands/3/2006(H1N1)和/Brisbane/59/2007(H1N1)相比,分别有15、12和4处不同,这些差异分布在Sa、Sb、Ca1、Ca2、Cb 5个抗原决定簇的氨基酸差异分别有5、5和2处.该毒株在健康人群血清的抗体阳性率为34.33%,几何平均效价(GMT)为10.38.A/Shanghai/1167/2011(H1N1)是2011年出现在上海地区的一个季节性甲型H1N1流感病毒毒株,其抗原变异与既往季节性甲型H1N1流感病毒相比不大,但在以A(H1N1)pdm09为主要流行株的年份检测到散在发生的既往季节性甲型H1N1流感病毒毒株应当引起重视,其在人群中的抗体水平较低,易引起流行,需要提高对类流感人群中此种毒株的持续监测. 相似文献
15.
In this study, we use our probabilistic models to analyze 130 hemagglutinins from different influenza A virus in order to gain the insight into their fate. The results provide three lines of evidence regarding the H5, H6, and H9 hemagglutinins: (i) the H5 hemagglutinins are more sensitive to mutations, this is the current state of the H5, H6, and H9 hemagglutinins; (ii) the H5 hemagglutinins had experienced more mutations in the past, this is the history of the H5, H6, and H9 hemagglutinins; and (iii) the H6 hemagglutinins has a bigger potential towards future mutations, this is the future of the H5, H6, and H9 hemagglutinins. Furthermore, this study gives two clues on the mutation tendency that is a degeneration process and the species susceptibility that is the chickens and ducks. 相似文献
16.
Korte T Ludwig K Huang Q Rachakonda PS Herrmann A 《European biophysics journal : EBJ》2007,36(4-5):327-335
The homotrimeric spike glycoprotein hemagglutinin (HA) of influenza virus undergoes a low pH-mediated conformational change
which mediates the fusion of the viral envelope with the target membrane. Previous approaches predict that the interplay of
electrostatic interactions between and within HA subunits, HA 1 and HA2, are essential for the metastability of the HA ectodomain.
Here, we show that suspension media of low ionic concentration promote fusion of fluorescent labelled influenza virus X31
with erythrocyte ghosts and with ganglioside containing liposomes. By measuring the low pH mediated inactivation of the fusion
competence of HA and the Proteinase K sensitivity of low pH incubated HA we show that the conformational change is promoted
by low ionic concentration. We surmise that electrostatic attraction within the HA ectodomain is weakened by lowering the
ionic concentration facilitating the conformational change at low pH.
Dedicated to Prof. K. Arnold on the occasion of his 65th birthday. 相似文献
17.
In this study, we calculate the unpredictable portion of amino-acid pairs, which has been developed by us over the last several years, of 1201 hemagglutinins from influenza A viruses dated from 1918 to 2004 in order to compare them with respect to subtypes, species, and years. After noticing the fluctuations of unpredictable portion along the time course, we use the fast Fourier transform to find the mutation periodicity of hemagglutinins. Then we estimate our position at the current cycle of hemagglutinin evolutionary process to determine how many years remain before the next outbreak of influenza and bird flu. Finally, we use the trend line and channel to outlook the hemagglutinins for the next half a century. As our study covers almost all the full-length amino-acid sequences of hemagglutinins from various influenza A viruses, the conclusion will be valid for years until the number of hemagglutinins in protein databank will be significantly increased. 相似文献
18.
Brian S. Hamilton Changik ChungSoreen Y. Cyphers Vera D. RinaldiValerie C. Marcano Gary R. Whittaker 《Biochemical and biophysical research communications》2014
Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza. 相似文献
19.
Zhu Q Chang H Chen Y Fang F Xue C Zhang F Qiu M Wang H Wang B Chen Z 《Biochemical and biophysical research communications》2005,329(1):87-94
Influenza virus infection frequently causes complications and some excess mortality in the patients with diabetes. Vaccination is an effective measure to prevent influenza virus infection. In this paper, antibody response and protection against influenza virus infection induced by vaccination were studied in mouse model of diabetes. Healthy and diabetic BALB/c mice were immunized once or twice with inactivated influenza virus vaccine at various dosages. Four weeks after the first immunization or 1 week after the second immunization, the mice were challenged with influenza virus at a lethal dose. The result showed that the antibody responses in diabetic mice were inhibited. Immunization once with high dose or twice with low dose of vaccine provided full protection against lethal influenza virus challenge in diabetic mice, however, in healthy mice, immunization only once with low dose provided a full protection. 相似文献
20.
An understanding of the structural determinants and molecular mechanisms involved in influenza A virus binding to human cell
receptors is central to the identification of viruses that pose a pandemic threat. To date, only a limited number of viruses
are known to have infected humans even sporadically, and this has recently included the virulent H5 and H7 avian viruses.
We compare here the 3-dimensional structures of H5 and H7 hemagglutinins (HA) complexed with avian and human receptor analogues,
to highlight regions within the receptor binding domains of these HAs that might prevent strong binding to the human receptor. 相似文献