首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shen JB  Ogren WL 《Plant physiology》1992,99(3):1201-1207
Site-directed mutagenesis was performed on the 1.6 and 1.9 kilobase spinach (Spinacea oleracea) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase cDNAs, encoding the 41 and 45 kilodalton (kD) isoforms of the enzyme, to create single amino acid changes in the putative ATP-binding site of Rubisco activase (Lys-107, Gln-109, and Ser-112) and in an unrelated cysteine residue (Cys-256). Replacement of Lys-107 with Met produced soluble protein with reduced Rubisco activase and ATPase activities in both isoforms. Substituting Ala or Arg for Lys-107 produced insoluble proteins. Rubisco activase activity increased in the 41-kD isoform when Gln-109 was changed to Glu, but activity in the 45-kD isoform was similar to the wild-type enzyme. ATPase activity in the Glu-109 mutations did not parallel the changes in Rubisco activase activity. Rather, a higher ratio of Rubisco activase to ATPase activity occurred in both isoforms. The mutation of Gln-109 to Lys inactivated Rubisco activase activity. Replacement of Ser-112 with Pro created an inactive protein, whereas attempts to replace Ser-112 with Thr were not successful. The mutation of Cys-256 to Ser in the 45-kD isoform reduced both Rubisco activase and ATPase activities. The results indicate that the two activities of Rubisco activase are not tightly coupled and that variations in photosynthetic efficiency may occur in vivo by replacing the wild-type enzyme with mutant enzymes.  相似文献   

2.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

3.
Spinach leaf (Spinacia oleracea L. var. Kyoho) protoplasts sustain protein-synthesizing activity as measured by the incorporation of [14C]-leucine into the protein fraction both in the light and in the dark. By the immunoprecipitation of ribulose-1,5-bisphosphate (RuP2) carboxylase with rabbit antibody raised against the purified spinach enzyme preparation, it was found that approximately 7% of the total radiocarbon incorporated into the protein fraction in the light was in the carboxylase molecules. However, there was no measurable net increase observed in the content of the enzyme protein in the experimental conditions employed. It was found that both chloramphenicol and cycloheximide inhibited the incorporation of [14C]leucine into RuP2 carboxylase and its constituent subunits, as measured by the immunoprecipitation of the enzyme molecule and its subunits, A and B.  相似文献   

4.
Klaus J. Lendzian 《Planta》1978,143(3):291-296
In a preparation of soluble components from isolated spinach (Spinecia oleracea L.) chloroplasts, the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is strongly increased by 6-phosphogluconate or by NADPH at pH 8.0. When the thylakoid system is added to these soluble components (reconstituted chloroplast system) plus ferredoxin, the carboxylase is even more strongly activated in the light. This light activation appears to be due to reduction of endogenous NADP+ by electrons from the light reactions transferred via ferredoxin, since NADPH alone can activate the purified enzyme in the dark while reduced ferredoxin does not. The regulatory properties of the enzyme in the reconstituted chloroplast system are compared with those of the isolated enzyme, and their possible physiologic significance is discussed.Abbreviations Fd ferredoxin - PPC pentose phosphate cycle - 6-PGluA 6-phosphogluconate - Rib-5-P ribose-5-phosphate - RuBP ribulose-1,5-bisphosphate  相似文献   

5.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

6.
7.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) rapidly extracted from leaves of wheat (Triticum aestivum) and purified activated RuBPCO were incubated in the presence and absence of 20 millimolar HCO3 and changes in activation state were followed. Rapid inactivation occurred in the presence, but not in the absence, of HCO3. Effects of CO2 concentration and pH during preincubation before assay on activation state of RuBPCO were investigated in equilibrium studies. Twenty percent inactivation occurred at high CO2 concentration if pH was high, but not if it was low, suggesting that RuBPCO was inactivated by HCO3. The inactivation by HCO3 was more rapid than the dissociation of activating CO2 in CO2-free buffer (both in the presence of 20 millimolar MgCl2), suggesting that HCO3 was bound to the active enzyme complex. The dissociation of inactivating HCO3 from the enzyme was slow enough that inhibition could be demonstrated in experiments with HCO3 treatments during preincubation and constant conditions during assay. Inorganic phosphate did not seem to interfere with the binding of HCO3.  相似文献   

8.
The regulation of ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco) activity and metabolite pool sizes in response to natural diurnal changes in photon flux density (PFD) was examined in three species (Phaseolus vulgaris, Beta vulgaris, and Spinacia oleracea) known to differ in the mechanisms used for this regulation. Diurnal regulation of Rubisco activity in P. vulgaris was primarily the result of metabolism of the naturally occurring tight-binding inhibitor of Rubisco, 2-carboxyarabinitol 1-phosphate (CA1P). In B. vulgaris, the regulation of Rubisco activity was the result of both changes in activation state and CA1P metabolism. In S. oleracea, Rubisco activity was regulated by a combination of changes in activation state and the binding/release of another tight binding inhibitor, probably RuBP. Despite these different mechanisms for the light regulation of Rubisco activity, the relationship between the in vivo activity of Rubisco and the PFD was the same for all three species. Rates of CA1P metabolism were thus sufficient to allow this mechanism to participate in the diurnal regulation of Rubisco activity as PFD changed at its normal rate. Furthermore, under natural conditions this regulatory mechanism was found to be important in controlling Rubisco activity over approximately the same range of PFD as did changes in activation state of the enzyme. Finally, this regulation of Rubisco activity resulted in relatively similar and saturating RuBP pool sizes for photosynthesis at all but the lowest PFD values in all three species.  相似文献   

9.
Crystals of a tertiary complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase with the activators Mg2+ and CO2 have been grown. These crystals diffract strongly to 1.6 Å resolution. The spacegroup is C2221 with unit cell dimensions a = 158.6 Å, b = 158.6 Å, c = 203.4 Å. Additional local symmetry is apparent in the pattern of absences and the intensity distribution of the X-ray precession photographs. The photographs have been interpreted in terms of a molecule (consisting of eight large and eight small subunits, L8S8) with 222 symmetry and a molecular centre shifted 2 Å in the x direction from the origin of the unit cell. The asymmetric unit contains half the L8S8 molecule. The intensity distribution suggests that the molecular symmetry does not deviate far from 422. These crystals are compared with other crystalline forms of the enzyme and the implications of these results are discussed.  相似文献   

10.
Wang ZY  Portis AR 《Plant physiology》1992,99(4):1348-1353
Ribulose bisphosphate (RuBP), a substrate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is an inhibitor of Rubisco activation by carbamylation if bound to the inactive, noncarbamylated form of the enzyme. The effect of Rubisco activase on the dissociation kinetics of RuBP bound to this form of the enzyme was examined and characterized with the use of 3H-labeled RuBP and proteins purified from spinach (Spinacia oleracea L.) In the absence of Rubisco activase and in the presence of a large excess of unlabeled RuBP, the dissociation rate of bound [1-3H]RuBP was much faster after a short (30 second) incubation than after an extended incubation (1 hour). After 1 hour of incubation, the dissociation rate constant (Koff) of the bound RuBP was 4.8 × 10−4 per second, equal to a half-time of about 35 minutes, whereas the rate after only 30 seconds was too fast to be accurately measured. This time-dependent change in the dissociation rate was reflected in the subsequent activation kinetics of Rubisco in the presence of RuBP, CO2, and Mg2+, and in both the absence or presence of Rubisco activase. However, the activation of Rubisco also proceeded relatively rapidly without Rubisco activase if the RuBP level decreased below the estimated catalytic site concentration. High pH (pH 8.5) and the presence of Mg2+ in the medium also enhanced the dissociation of the bound RuBP from Rubisco in the presence of RuBP. In the presence of Rubisco activase, Mg2+, ATP (but not the nonhydrolyzable analog, adenosine-5′-O-[3-thiotriphosphate]), excess RuBP, and an ATP-regenerating system, the dissociation of [1-3H]RuBP from Rubisco was increased in proportion to the amount of Rubisco activase added. This result indicates that Rubisco activase-mediated hydrolysis of ATP is required for promotion of the enhanced dissociation of the bound RuBP from Rubisco. Furthermore, product analysis by ion-exchange chromatography demonstrated that the release of the bound RuBP, in an unchanged form, was considerably faster than the observed increase in Rubisco activity. Thus, RuBP dissociation was experimentally separated from activation and precedes the subsequent formation of active, carbamylated Rubisco during activation of Rubisco by Rubisco activase.  相似文献   

11.
Mutagenesis in vitro of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) from Anacystis nidulans was used to generate novel enzymes. Two conserved residues, threonine 4 and lysine 11 in the N-terminus were changed. The substitution of threonine 4 with serine or valine had little effect on the kinetic parameters. The substitution of lysine 11 with leucine, which is non-polar, increased the K m for ribulose-1,5-bisphosphate from 82 to 190 M but its replacement with glutamine, which has polar properties, had no appreciable effect.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - LSU large sub-unit of Rubisco - SSU small subunit of Rubisco We thank Dr. S. Gutteridge (DuPont, Wilmington, USA) for structural information and for his comments on the results described. The technical assistance of Mr. A. Cowland and Mr. I. Major was invaluable.  相似文献   

12.
Xylulose-1,5-bisphosphate in preparations of ribulose-1,5-bisphosphate (ribulose-P2) arises from non-enzymic epimerization and inhibits the enzyme. Another inhibitor, a diketo degradation product from ribulose-P2, is also present. Both compounds simulate the substrate inhibition of ribulose-P2 carboxylase/oxygenase previously reported for ribulose-P2. Freshly prepared ribulose-P2 had little inhibitory activity. The instability of ribulose-P2 may be one reason for a high level of ribulose-P2 carboxylase in chloroplasts where the molarity of active sites exceeds that of ribulose-P2. Because the KD of the enzyme/substrate complex is ≤1 μM, all ribulose-P2 generated in situ may be stored as this complex to prevent decomposition.  相似文献   

13.
Intermediates in the ribulose-1,5-bisphosphate carboxylase reaction   总被引:2,自引:0,他引:2  
At least two intermediates of the D-ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) reaction were liberated in detectable amounts when the functioning enzyme from Rhodospirillum rubrum was quenched in acid. Using substrate labeled with 32P in C-1, [32P]orthophosphate (Pi) was found when the quenched solution was rapidly processed for extraction of Pi as the acid molybdate complex. Reaction with sodium borohydride under mildly alkaline conditions immediately after acid quenching of the carboxylase reaction decreased the amount of 32Pi that was observed by 68%. The compound whose degradation to Pi was prevented by reaction with sodium borohydride decomposed under both acid and neutral conditions with a half-time of about 5 min at 25 degrees C and was assigned to the beta-keto acid recently demonstrated for the spinach enzyme ( Schloss , J.V., and Lorimer , G.H. (1982) J. Biol. Chem. 257, 4691-4694). It was sufficiently stable upon neutralization to react productively with fresh enzyme. As substrate CO2 concentration was decreased below the steady state Km value, the proportion of the 32P that did not react with sodium borohydride increased, indicative of a second unstable intermediate that precedes the carboxylation step. The decomposition of the latter intermediate to Pi, which occurs with a t1/2 less than or equal to 6 ms, was prevented if I2 was present in the acid quench medium. These are properties expected of the 2,3- enediol form of ribulose bisphosphate. Both intermediates reach their maximum levels when product formation is most rapid and disappear when product formation is complete as expected of reaction intermediates.  相似文献   

14.
In the presence of either methyl xanthines or adenosine deaminase, isoproterenol elicited large dramatic increases in accumulation of cyclic AMPP. In contrast, cyclic AMP accumulation in response to epinephrine or norepinephrine was not potentiated by either methyl xanthines or by adenosine deaminase. Blocking the alpha adrenergic activity of norepinephrine and epinephrine with phentolamine established synergism between these catecholamines and methyl xanthines and adenosine deaminase. The activity of the particulate phosphodiesterase was not influenced by norepinephrine suggesting that the lack of synergism between the catecholamines norepinephrine and epinephrine and methyl xanthines is unrelated to this enzyme. The data are interpreted to suggest that the alpha adrenergic activity of catecholamines prevents the potentiation of cyclic AMP accumulation that occurs when the action of endogenously produced adenosine is interfered with, either by its degradation with adenosine deaminase or by receptor blockade with methyl xanthine. Because a major action of adenosine on fat cells is to inhibit adenylate cyclase it is suggested that alpha adrenergic receptor activation limits the extent to which the enzyme adenylate cyclase can be activated in a fashion similar to that of adenosine.  相似文献   

15.
Vaughn KC 《Plant physiology》1987,84(1):188-196
Two immunological approaches were used to determine if ribulose bisphosphate carboxylase oxygenase (RuBisCo) is present in guard cell chloroplasts. Immunocytochemistry on thin plastic sections using tissue samples that were processed using traditional glutaraldehyde/osmium fixation and then restored to antigenicity with metaperiodate treatment, resulted in labeling over wild-type mesophyll and guard cell plastids of several green and white variegated Pelargonium chimeras. The density of immunogold labeling in guard cell chloroplasts was only about one-seventh of that noted in mesophyll chloroplasts on a square micron basis. Because guard cell chloroplasts are much smaller than mesophyll chloroplasts, and occur at lower quantities/cell, the relative differences in RuBisCo concentration between the cell types indicate that guard cells have only 0.48% of the RuBisCo of mesophyll cells. No reaction was noted over 70S ribosomeless plastids of these chimeras even though adjacent green chloroplasts were heavily stained, indicating the high specificity of the reaction for RuBisCo. Spurr's resin gave the most successful colloidal gold labeling in terms of low background staining and structural detail but L. R. White's resin appeared to be superior for antigen retention. In the white leaf edges of the white and green Pelargonium chimeras, the only green, functional chloroplasts are in the guard cells. When either whole tissue or plastid enriched extracts from this white tissue were electrophoresed, blotted, and probed with anti-RuBisCo a large subunit band was detected, identical to that in the green tissue. These data indicate that a low, but detectable, level of RuBisCo is present in guard cell chloroplasts.  相似文献   

16.
The arrangement of subunits of ribulosebisphosphate carboxylase in solution has been studied by exposing the enzyme to the cross-linking agents tetranitromethane, dimethyl suberimidate, and dimethyl adipimidate, and the cleavable cross-linking agent, methyl 4-mercaptobutyrimidate followed by gel electrophoresis in the presence of dodecyl sulfate. All these agents caused the formation of dimers of the enzyme's small subunit, independently of protein concentration. In addition, trimers and tetramers of small subunit were detected in the mercaptobutyrimidate-treated enzyme. The data show that small subunits are closely paired in the native enzyme and may be in layers of four, or a ring of eight.  相似文献   

17.
Irmgard Ziegler 《Planta》1972,103(2):155-163
Summary SO 3 -- inhibits the activity of ribulose-1,5-diphosphate carboxylase in isolated spinach chloroplasts. It shows a non-competitive inhibition pattern with respect to ribulose-1,5-diphosphate and Mg++ but a competitive one with respect to HCO 3 - . The K i -values are 14 mM SO 3 -- and 9.5 mM SO 3 - respectively for the non-competitive inhibition but only 3.0 mM SO 3 -- in the case of competitive inhibition with HCO 3 -- as a substrate. Thus it is concluded that the competitive inhibition type will predominate at low SO 3 -- and low internal CO2 concentrations.The abbreviations used RuDph ribulose-1,5-diphosphate - DTT dithiothreitol - EDTA ethylenediaminetetraacetate  相似文献   

18.
19.
The three-dimensional structure of the complex of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, CO2, Mg2+, and ribulose bisphosphate has been determined with x-ray crystallographic methods to 2.6-A resolution. Ribulose-1,5-bisphosphate binds across the active site with the two phosphate groups in the two phosphate binding sites of the beta/alpha barrel. The oxygen atoms of the carbamate and the side chain of Asp-193 provide the protein ligands to the bound Mg2+ ion. The C2 and the C3 or C4 oxygen atoms of the substrate are also within the first coordination sphere of the metal ion. At the present resolution of the electron density maps, two slightly different conformations of the substrate, with the C3 hydroxyl group "cis" or "trans" to the C2 oxygen, can be built into the observed electron density. The two different conformations suggest two different mechanisms of proton abstraction in the first step of catalysis, the enolization of the ribulose 1,5-bisphosphate. Two loop regions, which are disordered in the crystals of the nonactivated enzyme, could be built into their respective electron density. A comparison with the structure of the quaternary complex of the spinach enzyme shows that despite the different conformations of loop 6, the positions of the Mg2+ ion, and most atoms of the substrate are very similar when superimposed on each other. There are, however, some significant differences at the active site, especially in the metal coordination sphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号