首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.  相似文献   

2.
The Cucumber mosaic virus (CMV)-encoded 1a protein has been implicated to play a role in replication of the viral genome along with 2a and one or more host factors. To identify the host cell factors interacting with CMV 1a, we used the yeast two-hybrid system using tobacco cDNA library. One of the cDNA clones encoded a protein homologous to the Arabidopsis putative protein kinase and was designated as Tcoi2 (Tobacco CMV 1a interacting protein 2). Tcoi2 specifically interacted with methyltransferase (MT) domain of CMV 1a protein in yeast cell. In vitro analyses using recombinant proteins showed that Tcoi2 also specifically interacted with CMV 1a MT domain. Tcoi2 did not have autophosphorylation activity but phosphorylated CMV 1a MT domain. Analysis of the subcellular localization of the Tcoi2 fused to GFP demonstrated that it is targeted to the endoplasmic reticulum. These results suggest Tcoi2 as a novel host factor that is capable of interacting and phosphorylating MT domain of CMV 1a protein.  相似文献   

3.
Brome mosaic virus (BMV) is a representative member of positive-strand RNA viruses. The 1a replicase from BMV is a membrane protein of unknown structure with a methyltransferase N-terminal domain and a putative helicase activity in the C-terminal domain. In order to make a functional prediction of the helicase activity of the BMV 1a C-terminal domain, we have built a model of its structure. The use of fold recognition servers hinted at two different superfamilies of helicases [superfamily 1 (SF1) and superfamily 2 (SF2)] as putative templates for the C-terminal fragment of BMV 1a. A structural model of BMV 1a in SF2 was obtained by means of a fold recognition server (3D-PSSM). On the other hand, we used the helicase motifs described in the literature to construct a model of the structure of the BMV 1a C-terminal domain as a member of the SF1. The biological functionality and statistic potentials were used to discriminate between the two models. The results illustrate that the use of sequence profiles and patterns helps modeling. Accordingly, the C-terminal domain of BMV 1a is a potential member of the SF1 of helicases, and it can be modeled with the structure of a member of the UvrD family of helicases. The helicase mechanism was corroborated by the model and this supports the hypothesis that BMV 1a should have helicase activity.  相似文献   

4.
The ERM proteins (ezrin, radixin, moesin) together with merlin comprise a subgroup of the band 4.1 superfamily. These proteins act as membrane cytoskeletal linker proteins mediating interactions between the cytoplasmic domains of transmembrane proteins and actin. To better understand how the ERM proteins function to regulate these junctional complexes, a yeast 2-hybrid screen was undertaken using ezrin as a bait. We describe here the identification and cloning of a novel protein, PACE-1, which binds to the C-terminal domain of ezrin. Characterization of PACE-1 in human breast cancer cell lines demonstrates it to have two distinct intracellular localizations. A proportion of the protein is associated with the cytoplasmic face of the Golgi apparatus. This distribution is dependent upon the presence of the PACE-1 N-terminal myristoylation consensus sequence but is not dependent on an association with ezrin. In contrast, PACE-1 colocalises with ezrin in the lamellipodia, where ezrin has a role in cell spreading and motility. A notable feature of PACE-1 is the presence of a putative N-terminal kinase domain; however, in biochemical assays PACE-1 was shown to have associated rather than intrinsic kinase activity. Together these data suggest that PACE-1 may play a role in regulating cell adhesion/migration complexes in migrating cells.  相似文献   

5.
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant.  相似文献   

6.
7.
8.
The targeting of the movement protein (MP) of Tobacco mosaic virus to plasmodesmata involves the actin/endoplasmic reticulum network and does not require an intact microtubule cytoskeleton. Nevertheless, the ability of MP to facilitate the cell-to-cell spread of infection is tightly correlated with interactions of the protein with microtubules, indicating that the microtubule system is involved in the transport of viral RNA. While the MP acts like a microtubule-associated protein able to stabilize microtubules during late infection stages, the protein was also shown to cause the inactivation of the centrosome upon expression in mammalian cells, thus suggesting that MP may interact with factors involved in microtubule attachment, nucleation, or polymerization. To further investigate the interactions of MP with the microtubule system in planta, we expressed the MP in the presence of green fluorescent protein (GFP)-fused microtubule end-binding protein 1a (EB1a) of Arabidopsis (Arabidopsis thaliana; AtEB1a:GFP). The two proteins colocalize and interact in vivo as well as in vitro and exhibit mutual functional interference. These findings suggest that MP interacts with EB1 and that this interaction may play a role in the associations of MP with the microtubule system during infection.  相似文献   

9.
Reassembled alfalfa mosaic virus coat protein was partially digested with trypsin to remove the first 26 amino acids (Bol et al., 1974). These particles are empty icosahedral protein shells built with 60 alfalfa mosaic virus protein subunits. This aggregate has been crystallized in two different crystal forms, one of which diffracts X-rays to at least 3.4 Å resolution. The type I crystals (space group P63, a = 200 A?, c = 314 A?) contain two particles per cell separated by 195 Å with each sitting on a 3-fold axis. The type II crystals contain three particles per cell in space group P31or P32 (a = 201 A?, c = 485 A?). Other T = 1 viral particles have very similar diameters.  相似文献   

10.
11.
12.
13.
14.
Molecular weight of the coat protein of alfalfa mosaic virus   总被引:8,自引:0,他引:8  
  相似文献   

15.
The formation of axon tracts in nervous system histogenesis is the result of selective axon fasciculation and specific growth cone guidance in embryonic development. One group of proteins implicated in neurite outgrowth, fasciculation, and guidance is the neural members of the Ig superfamily (IgSF). In an attempt to identify and characterize new proteins of this superfamily in the developing nervous system, we used a PCR-based strategy with degenerated primers that represent conserved sequences around the characteristic cysteine residues of Ig-like domains. Using this approach, we identified a novel neural IgSF member, termed neurotractin. This GPI-linked cell surface glycoprotein is composed of three Ig-like domains and belongs to the IgLON subgroup of neural IgSF members. It is expressed in two isoforms with apparent molecular masses of 50 and 37 kD, termed L-form and S-form, respectively. Monoclonal antibodies were used to analyze its biochemical features and histological distribution. Neurotractin is restricted to subsets of developing commissural and longitudinal axon tracts in the chick central nervous system. Recombinant neurotractin promotes neurite outgrowth of telencephalic neurons and interacts with the IgSF members CEPU-1 (KD = 3 x 10(-8) M) and LAMP. Our data suggest that neurotractin participates in the regulation of neurite outgrowth in the developing brain.  相似文献   

16.
A study was made of the coat protein (CP) of thermosensitive semidefective tobacco mosaic virus strain K1 (TMV-K1). In contrast to CP of other TMV strains, K1 CP showed high nonspecific aggregation and did not form normal two-layered cylindrical aggregates. In none of the conditions tested, K1 CP formed virions with cognate K1 RNAin vitro. The abnormal properties were attributed to substitution Lys53→Glu differentiating the K1 CP from those of other tobamoviruses. It is assumed that the high structural plasticity allows the tobamovirus virions to incorporate CP subunits even with unfavorable amino acid changes.  相似文献   

17.
Alternative splicing of the TrkB gene produces a full length tyrosine kinase receptor as well as two truncated isoforms that contain extracellular and transmembrane domains but lack the kinase domain and have unique C terminal tails. The function of the truncated TrkB isoforms is unclear and to gain insights into their function, we have isolated a protein from 15N neuroblastoma cells that specifically binds the TrkB.T1 isoform. Pulldown experiments using a GST fusion protein containing the TrkB.T1 intracellular domain identified a 61 kDa protein from radiolabeled 15N lysates. Coimmunoprecipitation experiments showed that the 61 kDa protein interacted with epitope-tagged TrkB.T1 overexpressed in 15N cells as well as with TrkB.T1 which was endogenously expressed. Peptide competition experiments revealed that the protein, designated TTIP (for Truncated TrkB Interacting Protein), showed specific binding to the TrkB.T1 tail. MALDI MS and MS/MS analysis has revealed that TTIP is a novel protein not yet listed in the current databases.  相似文献   

18.
The intrinsic luminescence of different forms of the alfalfa mosaic virus (AMV) strain 425 coat protein has been studied, both statically and time resolved. It was found that the emission of the protein (Mr 24,250), which contains two tryptophans at positions 54 and 190 and four tyrosines, is completely dominated by tryptophan fluorescence. The high fluorescence quantum yield indicates that both tryptophans are emitting. Surprisingly, the fluorescence decay is found to be strictly exponential, with a lifetime of 5.1 nsec. Similar results were obtained for various other forms of the protein, i.e. the 30-S polymer, the mildly trypsinized forms of the protein lacking the N-terminal part and the protein assembled into viral particles. Virus particles and proteins of stains S and VRU gave similar results, as well as the VRU protein polymerised into tubular structures. The fluorescence decay is also monoexponential in the presence of various concentrations of the quenching molecules acrylamide and potassium iodide. Stern-Volmer plots were linear and yield for the coat protein dimer with acrylamide a quenching constant of 4.5* 10(8) M-1 sec-1. This indicates that the tryptophans are moderately accessible for acrylamide. For the 30-S polymer a somewhat smaller value was found, whereas in the viral Top a particles the accessibility of the tryptophans is still further reduced. From the decay of the polarisation anisotropy of the fluorescence of the coat protein dimer the rotational correlation time was obtained as 35 nsec. Since this roughly equals the expected rotational correlation time of the dimer as a whole, it suggests that the tryptophans are contained rigidly in the dimer. The results show that in the excited state of the protein the two tryptophans are strongly coupled and suggest that the trp-trp distance is smaller than 10 A. Because the coat protein occurs as a dimer, the coupling can be inter- or intramolecular. The implications for the viral structure are discussed.  相似文献   

19.
20.
Unique particles of barley yellow streak mosaic virus (BYSMV) were detected in diseased barley, wheat, and several species of grass. They appeared to be about 64 nm in width and from 127 nm to an astonishing 4000 nm in length. Individual particles were circular in transverse section. The outermost layer of each particle seemed to be a membrane-like envelope. The internal structure of many particles was bead-like. Some particles had centers that were translucent. The BYSMV particles were distributed throughout the leaf, sheath, root, and own organs of barley. Virus particles were present in all cell types of the epidermis, mesophyll, phloem, and xylem. However, mesophyll cells contained the greatest number of particles. Most BYSMV particles occurred in large clusters of quasi-parallel arrays. Both individual and groups of particles were located within the cavities of ER elements. Ribosomes were attached to some outer surfaces of the ER bounding membrane. BYSMV particles are unique because they do not resemble any in presently classified groups or families of plant viruses: they are, however, similar to those of some unclassified viruses that infect insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号