首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dps (DNA protection during starvation) enzymes are a major class of dodecameric proteins that bacteria use to detoxify their cytosol through the uptake of reactive iron species. In the stationary growth phase of bacteria, Dps enzymes are primarily used to protect DNA by biocrystallization. To characterize the wild type Dps protein from Microbacterium arborescens that displays additional catalytic functions (amide hydrolysis and synthesis), we determined the crystal structure to a resolution of 2.05 Å at low iron content. The structure shows a single iron at the ferroxidase center coordinated by an oxo atom, one water molecule, and three ligating residues. An iron-enriched protein structure was obtained at 2 Å and shows the stepwise uptake of two hexahydrated iron atoms moving along channels at the 3-fold axis before a restriction site inside the channels requires removal of the hydration sphere. Supporting biochemical data provide insight into the regulation of this acylamino acid hydrolase. Moreover, the peroxidase activity of the protein was determined. The influence of iron and siderophores on the expression of acylamino acid hydrolase was monitored during several stages of cell growth. Altogether our data provide an interesting view of an unusual Dps-like enzyme evolutionarily located apart from the large Dps sequence clusters.  相似文献   

2.
The first crystal structure of a native di-iron center in an iron-storage protein (bacterio)ferritin is reported. The protein, isolated from the anaerobic bacterium Desulfovibrio desulfuricans, has the unique property of having Fe-coproporphyrin III as its heme cofactor. The three-dimensional structure of this bacterioferritin was determined in three distinct catalytic/redox states by X-ray crystallography (at 1.95, 2.05 and 2.35 A resolution), corresponding to different intermediates of the di-iron ferroxidase site. Conformational changes associated with these intermediates support the idea of a route for iron entry into the protein shell through a pore that passes through the di-iron center. Molecular surface and electrostatic potential calculations also suggest the presence of another ion channel, distant from the channels at the three- and four-fold axes proposed as points of entry for the iron atoms.  相似文献   

3.
Crystal structure of substrate-free Pseudomonas putida cytochrome P-450   总被引:6,自引:0,他引:6  
T L Poulos  B C Finzel  A J Howard 《Biochemistry》1986,25(18):5314-5322
The crystal structure of Pseudomonas putida cytochrome P-450cam in the substrate-free form has been refined at 2.20-A resolution and compared to the substrate-bound form of the enzyme. In the absence of the substrate camphor, the P-450cam heme iron atom is hexacoordinate with the sulfur atom of Cys-357 providing one axial heme ligand and a water molecule or hydroxide ion providing the other axial ligand. A network of hydrogen-bonded solvent molecules occupies the substrate pocket in addition to the iron-linked aqua ligand. When a camphor molecule binds, the active site waters including the aqua ligand are displaced, resulting in a pentacoordinate high-spin heme iron atom. Analysis of the Fno camphor - F camphor difference Fourier and a quantitative comparison of the two refined structures reveal that no detectable conformational change results from camphor binding other than a small repositioning of a phenylalanine side chain that contacts the camphor molecule. However, large decreases in the mean temperature factors of three separate segments of the protein centered on Tyr-96, Thr-185, and Asp-251 result from camphor binding. This indicates that camphor binding decreases the flexibility in these three regions of the P-450cam molecule without altering the mean position of the atoms involved.  相似文献   

4.
Sogabe S  Miki K 《FEBS letters》2001,491(3):174-179
The crystal structure of the oxidized cytochrome c(2) from Blastochloris (formerly Rhodopseudomonas) viridis was determined at 1.9 A resolution. Structural comparison with the reduced form revealed significant structural changes according to the oxidation state of the heme iron. Slight perturbation of the polypeptide chain backbone was observed, and the secondary structure and the hydrogen patterns between main-chain atoms were retained. The oxidation state-dependent conformational shifts were localized in the vicinity of the methionine ligand side and the propionate group of the heme. The conserved segment of the polypeptide chain in cytochrome c and cytochrome c(2) exhibited some degree of mobility, interacting with the heme iron atom by the hydrogen bond network. These results indicate that the movement of the internal water molecule conserved in various c-type cytochromes drives the adjustments of side-chain atoms of nearby residue, and the segmental temperature factor changes along the polypeptide chain.  相似文献   

5.
A bacterioferritin was isolated from the anaerobic bacterium Desulfovibrio desulfuricans ATCC 27774, grown with nitrate as the terminal electron acceptor, which is the first example of a bacterioferritin from a strict anaerobic organism. This new bacterioferritin was isolated mainly as a 24-mer of 20 kDa identical subunits, containing 0.5 noncovalently bound heme and 2 iron atoms per monomer. Although its N-terminal sequence is significantly homologous with ferritins from other microorganisms and the ligands to the di-iron ferroxidase center are conserved, it is one of the most divergent bacterioferritins so far characterized. Also, in contrast to all other known bacterioferritins, its heme is not of the B type; its chromatographic behavior is identical to that of iron uroporphyrin. Thus, D. desulfuricans bacterioferritin appears to be the second example of a protein unexpectedly containing this heme cofactor, or a closely related porphyrin, after its finding in Desulfovibrio gigas rubredoxin:oxygen oxidoreductase ?Timkovich, R., Burkhalter, R. S., Xavier, A. V., Chen, L., and Le Gall, J. (1994) Bioorg. Chem. 22, 284-293. The oxidized form of the protein has a visible spectrum characteristic of low-spin ferric hemes, exhibiting a weak absorption band at 715 nm, indicative of bis-methionine heme axial coordination; upon reduction, the alpha-band appears at 550 nm and a splitting of the Soret band occurs, with two maxima at 410 and 425 nm. The heme center has a reduction potential of 140 +/- 10 mV (pH 7.6), a value unusually high compared to that of other bacterioferritins (ca. -200 mV).  相似文献   

6.
By constructing a continuity equation of energy flow, one can utilize results from a molecular dynamics simulation to calculate the energy flux or flow in different parts of a biomolecule. Such calculations can yield useful insights into the pathways of energy flow in biomolecules. The method was first tested on a small system of a cluster of 13 argon atoms and then applied to the study of the pathways of energy flow after a tuna ferrocytochrome c molecule was oxidized. Initially, energy propagated faster along the direction perpendicular to the heme plane. This was due to an efficient through-bond mechanism, because the heme iron in cytochrome c was covalently bonded to a cysteine and a histidine. For the oxidation of cytochrome c, electrostatic interactions also facilitated a long-range through-space mechanism of energy flow. As a result, polar or charged groups that were further away from the oxidation site could receive energy earlier than nonpolar groups closer to the site. Another bridging mechanism facilitating efficient long-range responses to cytochrome c oxidation involved the coupling of far-off atoms with atoms that were nearer to, and interacted directly with, the oxidation site. The different characteristics of these energy transfer mechanisms defied a simple correlation between the time that the excess energy of the oxidation site first dissipated to an atom and the distance of the atom from the oxidation site. For tuna cytochrome c, all of the atoms of the protein had sensed the effects of the oxidation within approximately 40 fs. For the length scale of energy transfer considered in this study, the speed of the energy propagation in the protein was on the order of 10(5) m/s.  相似文献   

7.
Iron K-edge X-ray absorption spectra were obtained on the protein B2, the small subunit of ribonucleotide reductase from Escherichia coli. Protein B2 contains a binuclear iron center with many properties in common with the iron center of oxidized hemerythrins. The extended X-ray absorption fine structure (EXAFS) measurements on protein B2 were analyzed and compared with published data for oxyhemerythrin. In protein B2 there are, in the first coordination shell around each Fe atom, five or six oxygen or nitrogen atoms that are directly coordinated ligands. In oxyhemerythrin there are six ligands to each iron. As in oxyhemerythrin, one of the ligands in the first shell of protein B2 is at a short distance, about 1.78 A, confirming the existence of a mu-oxo bridge. The other atoms of the first shell are at an average distance of 2.04 A, which is about 0.1 A shorter than in oxyhemerythrin. In protein B2 the Fe-Fe distance is in the range 3.26-3.48 A, and the bridging angle falls between 130 and 150 degrees. On the basis of these data, there is no direct evidence for any histidine ligands in protein B2, but the noise level leaves way for the possibility of a maximum of about three histidines for each Fe pair. The X-ray absorption spectrum of a hydroxyurea-treated sample was not significantly different from that of the native protein B2, which implies that no significant alteration in the structure of the iron site occurs upon destruction of the tyrosine radical.  相似文献   

8.
Hemoglobin and related heme proteins, generally referred to as 'globins', reversibly bind gaseous diatomic ligands (O2, NO, and CO) to a penta-coordinate heme iron atom, the ligand filling the sixth coordination site. Over the last decade, several new globins have been reported to display a functionally-relevant hexa-coordinate heme iron atom, whose sixth coordination site is taken by an endogenous protein ligand. The reversible intramolecular hexa- to penta-coordination process at the heme-Fe atom modulates exogenous ligand binding properties of hexa-coordinate globins. Here, we review current knowledge on hexa-coordinate globins in terms of their structural and functional properties.  相似文献   

9.
Recent spectroscopic and magnetic susceptibility studies of the iron center in the two-iron ferredoxins provide criteria which any model for the iron-sulfur complex in these proteins must satisfy. These criteria are most stringent for parsley and spinach ferredoxin: the reduced proteins contain a high-spin ferric atom antiferromagnetically exchange-coupled (presumably via sulfide bridging ligands) to a high-spin ferrous atom. In the oxidized proteins the iron atoms are antiferromagnetically spin-coupled, high-spin ferric atoms. Arguments are given to substantiate the claim that the ferrous atom in the reduced protein is ligated by four sulfur atoms in a distorted tetrahedral configuration: two are the bridging sulfides, two are cysteinyl sulfurs. A treatment of proton contact shifts based upon the above model is pertinent to proton magnetic resonance data already available and provides a means to identify directly the ligands at both iron atoms via further PMR experiments.  相似文献   

10.
Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.  相似文献   

11.
Carbon monoxide, formate, and acetate interact with horseradish peroxidase (HRP) by binding to subsites within the active site. These ligands also bind to catalases, but their interactions are different in the two types of enzymes. Formate (notionally the "hydrated" form of carbon monoxide) is oxidized to carbon dioxide by compound I in catalase, while no such reaction is reported to occur in HRP, and the CO complex of ferrocatalase can only be obtained indirectly. Here we describe high-resolution crystal structures for HRP in its complexes with carbon monoxide and with formate, and compare these with the previously determined HRP-acetate structure [Berglund, G. I., et al. (2002) Nature 417, 463-468]. A multicrystal X-ray data collection strategy preserved the correct oxidation state of the iron during the experiments. Absorption spectra of the crystals and electron paramagnetic resonance data for the acetate and formate complexes in solution correlate electronic states with the structural results. Formate in ferric HRP and CO in ferrous HRP bind directly to the heme iron with iron-ligand distances of 2.3 and 1.8 A, respectively. CO does not bind to the ferric iron in the crystal. Acetate bound to ferric HRP stacks parallel with the heme plane with its carboxylate group 3.6 A from the heme iron, and without an intervening solvent molecule between the iron and acetate. The positions of the oxygen atoms in the bound ligands outline a potential access route for hydrogen peroxide to the iron. We propose that interactions in this channel ensure deprotonation of the proximal oxygen before binding to the heme iron.  相似文献   

12.
The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.  相似文献   

13.
Oxidation state-dependent conformational changes in cytochrome c.   总被引:2,自引:0,他引:2  
High-resolution three-dimensional structural analyses of yeast iso-1-cytochrome c have now been completed in both oxidation states using isomorphous crystalline material and similar structure determination methodologies. This approach has allowed a comprehensive comparison to be made between these structures and the elucidation of the subtle conformational changes occurring between oxidation states. The structure solution of reduced yeast iso-1-cytochrome c has been published and the determination of the oxidized protein and a comparison of these structures are reported herein. Our data show that oxidation state-dependent changes are expressed for the most part in terms of adjustments to heme structure, movement of internally bound water molecules and segmental thermal parameter changes along the polypeptide chain, rather than as explicit polypeptide chain positional shifts, which are found to be minimal. This result is emphasized by the retention of all main-chain to main-chain hydrogen bond interactions in both oxidation states. Observed thermal factor changes primarily affect four segments of polypeptide chain. Residues 37-39 show less mobility in the oxidized state, with Arg38 and its side-chain being most affected. In contrast, residues 47-59, 65-72 and 81-85 have significantly higher thermal factors, with maximal increases being observed for Asn52, Tyr67 and Phe82. The side-chains of two of these residues are hydrogen bonded to the internally bound water molecule, Wat166, which shows a large 1.7 A displacement towards the positively charged heme iron atom in the oxidized protein. Further analyses suggest that Wat166 is a major factor in stabilizing both oxidation states of the heme through differential orientation of dipole moment, shift in distance to the heme iron atom and alterations in the surrounding hydrogen bonding network. It also seems likely that Wat166 movement leads to the disruption of the hydrogen bond from the side-chain of Tyr67 to the Met80 heme ligand, thereby further stabilizing the positively charged heme iron atom in oxidized cytochrome c. In total, there appear to be three regions about which oxidation state-dependent structural changes are focussed. These include the pyrrole ring A propionate group, Wat166 and the Met80 heme ligand. All three of these foci are linked together by a network of intermediary interactions and are localized to the Met80 ligand side of the heme group. Associated with each is a corresponding nearby segment of polypeptide chain having a substantially higher mobility in the oxidized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The pentaheme cytochrome c nitrite reductase (NrfA) of Escherichia coli is responsible for nitrite reduction during anaerobic respiration when nitrate is scarce. The NrfA active site consists of a hexacoordinate high-spin heme with a lysine ligand on the proximal side and water/hydroxide or substrate on the distal side. There are four further highly conserved active site residues including a glutamine (Q263) positioned 8 A from the heme iron for which the side chain, unusually, coordinates a conserved, essential calcium ion. Mutation of this glutamine to the more usual calcium ligand, glutamate, results in an increase in the K m for nitrite by around 10-fold, while V max is unaltered. Protein film voltammetry showed that lower potentials were required to detect activity from NrfA Q263E when compared with native enzyme, consistent with the introduction of a negative charge into the vicinity of the active site heme. EPR and MCD spectroscopic studies revealed the high spin state of the active site to be preserved, indicating that a water/hydroxide molecule is still coordinated to the heme in the resting state of the enzyme. Comparison of the X-ray crystal structures of the as-prepared, oxidized native and mutant enzymes showed an increased bond distance between the active site heme Fe(III) iron and the distal ligand in the latter as well as changes to the structure and mobility of the active site water molecule network. These results suggest that an important function of the unusual Q263-calcium ion pair is to increase substrate affinity through its role in supporting a network of hydrogen bonded water molecules stabilizing the active site heme distal ligand.  相似文献   

15.
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.  相似文献   

16.
The molecular structures of ferri- and ferrocytochrome c551 from Pseudomonas aeruginosa have been refined at a resolution of 1.6 Å, to an R factor of 19.5% for the oxidized molecule and 18.7% for the reduced. Reduction of oxidized crystals with ascorbate produced little change in cell dimensions, a 10% mean change in Fobs, and no damage to the crystals. The heme iron is not significantly displaced from the porphyrin plane. Bond lengths from axial ligands to the heme iron are as expected in a low-spin iron compound. A total of 67 solvent molecules were incorporated in the oxidized structure, and 73 in the reduced, of which four are found inside the protein molecule. The oxidized and reduced forms have virtually identical tertiary structures with 2 ° root-mean-square differences in main-chain torsion angles φ and ψ, but with larger differences along the two edges of the heme crevice. The difference map and pyrrole ring tilt suggest that a partially buried water molecule (no. 23) in the heme crevice moves upon change of oxidation state.Pseudomonas cytochrome c551 differs from tuna cytochrome c in having: (1) a water molecule (no. 23) at the upper left of the heme crevice; that is, between Pro62 and the heme pyrrol 3 ring on the sixth ligand Met61 side, where tuna cytochrome c has an evolutionary invariant Phe82 ring; (2) a string of hydrophobic side-chains along the left side of the heme crevice, and fewer positively charged lysines in the vicinity; and (3) a more exposed and presumably more easily ionizable heme propionate group at the bottom of the molecule. A network of hydrogen bonds in the heme crevice is reminiscent of that inside the heme crevice of tuna cytochrome c. As in tuna, a slight motion of the water molecule toward the heme is observed in the oxidized state, helping to give the heme a more polar microenvironment. The continuity of solvent environment between the heme crevice and the outer medium could explain the greater dependence of redox potential on pH in cytochrome c551 than in cytochrome c.  相似文献   

17.
Cytochrome c554 (cyt c554) is a tetra-heme cytochrome involved in the oxidation of NH3 by Nitrosomonas europaea. The X-ray crystal structures of both the oxidized and dithionite-reduced states of cyt c554 in a new, rhombohedral crystal form have been solved by molecular replacement, at 1.6 A and 1.8 A resolution, respectively. Upon reduction, the conformation of the polypeptide chain changes between residues 175 and 179, which are adjacent to hemes III and IV. Cyt c554 displays conserved heme-packing motifs that are present in other heme-containing proteins. Comparisons to hydroxylamine oxidoreductase, the electron donor to cyt c554, and cytochrome c nitrite reductase, an enzyme involved in nitrite ammonification, reveal substantial structural similarity in the polypeptide chain surrounding the heme core environment. The structural determinants of these heme-packing motifs extend to the buried water molecules that hydrogen bond to the histidine ligands to the heme iron. In the original structure determination of a tetragonal crystal form, a cis peptide bond between His129 and Phe130 was identified that appeared to be stabilized by crystal contacts. In the rhombohedral crystal form used in the present high-resolution structure determination, this peptide bond adopts the trans conformation, but with disallowed angles of phi and psi.  相似文献   

18.
M Sono  J H Dawson  K Hall  L P Hager 《Biochemistry》1986,25(2):347-356
Equilibrium binding studies of exogenous ligands and halides to the active site heme iron of chloroperoxidase have been carried out from pH 2 to 7. Over twenty ligands have been studied including C, N, O, P, and S donors and the four halides. As judged from changes in the optical absorption spectra, direct binding of the ligands to the heme iron of ferric or ferrous chloroperoxidase occurs in all cases; this has been ascertained for the ferric enzyme in several cases through competition experiments with cyanide. All of the ligands except for the halides, nitrate, and acetate form exclusively low-spin complexes in analogy to results obtained with the spectroscopically related protein, cytochrome P-450-CAM [Sono, M., & Dawson, J.H. (1982) J. Biol. Chem. 257, 5496-5502]. The titration results show that, for the ferric enzyme, (i) weakly acidic ligands (pKa greater than 3) bind to the enzyme in their neutral (protonated) form, followed by deprotonation upon ligation to the heme iron. In contrast, (ii) strongly acidic ligands (pKa less than 0) including SCN-, NO3-, and the halides except for F- likely bind in their anionic (deprotonated) form to the acid form of the enzyme: a single ionizable group on the protein with a pKa less than 2 is involved in this binding. For the ferrous enzyme, (iii) a single ionizable group with the pKa value of 5.5 affects ligand binding. These results reveal that chloroperoxidase, in spite of the previously established close spectroscopic and heme iron coordination structure similarities to the P-450 enzymes, clearly belongs to the hydroperoxidases in terms of its ligand binding properties and active site heme environment. Magnetic circular dichroism studies indicate that the alkaline form (pH 9.5) of ferric chloroperoxidase has an RS-ferric heme-N donor ligand coordination structure with the N donor likely derived from histidine imidazole.  相似文献   

19.
1. In respiratory nitrate reductase I of Klebsiella aerogenes, 0.24 atom of molybdenum, eight iron-sulfur groups and four tightly bound, non-heme iron atoms per molecule of enzyme (Mr 260 000) are found. 2. EPR spectra at 83 degrees K of oxidized and reduced nitrate reductase I show complex lines at g = 2.02 and g = 1.98, which are more intense in the reduced than in the oxidized enzyme. The resonances, the shape and intensity of which are rather temperature insensitive, are attributed to two species of paramagnetic molybdenum. In dithionite-reduced enzyme all these lines are saturated at the same microwave power of 15 mW. This is not the case in oxidized enzyme, where the resonance at g = 2.02 is hard to saturate. Addition of nitrate to dithionite-reduced reductase I decreases the intensity of the EPR lines to about that of oxidized enzyme. The participation of molybdenum in the electron transfer process has been discussed. 3. At 18 degrees K the oxidized enzyme exhibits an axial-symmetrical signal with g parallel = 2.10 and g = 2.03, and a signal with unknown symmetry at g = 2.015. Upon reduction by dithionite, a ferredoxin type of signal is observed with g values at 2.05, 1.95 and 1.88, while the g = 2.015 signal disappears. Reoxidation by nitrate causes a concomitant disappearance of the ferredoxin type of signal and reappearance of the g = 2.015 signal; hence iron-sulfur centres participate in the transfer of electrons to nitrate. 4. Nitrate reductase II, containing only two (Mr 117 000 and 57 000) of the three subunits found in nitrate reductase I and lacking the tightly bound iron, does not exhibit the axial-symmetrical signal (g = 2.10 and 2.03). Thus, it suggested that this signal in nitrate reductase I stems from an iron centre in the low-molecular weight subunit (Mr 52 000). 5. Inhibition studies confirm the participation of metals in the transfer of electrons from reduced benzylviologen to nitrate and show that the binding sites for these substrates are different.  相似文献   

20.
Iron electron-nuclear double resonance (ENDOR) measurements were made of the 4-Fe clusters in oxidized Chromatium high-potential iron-sulfur protein, dithionite-reduced high-potential iron-sulfur protein in 80% dimethylsulphoxide, fully reduced Clostridium pasteurianum ferredoxin in aqueous solution and in 80% dimethylsulfoxide. The hyperfine couplings determined show that: i) the electron distribution in each case is nearly symmetric; ii) there are two types of iron in oxidized high potential iron-sulfur protein; iii) only one type of iron is observed in each fully reduced 4-Fe cluster; iv) the data also suggest a greater electron delocalization onto the ligands as compared to the 2-Fe ferredoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号