首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is of great importance to explore the development of epileptogenesis, and the adenosine and adenosine kinase (ADK) system seems to play a key role in this process. The aim of this study is to explore the dynamic changes of astrocytes and adenosine signaling during epileptogenesis in rat hippocampus in a post-status epileptogenesis (SE) model. Rat SE models were built and killed for experiments at 1 day (acute phase of epileptogenesis), 5 days (latent phase), 4 weeks (chronic phase), and 8 weeks (late chronic phase of epileptogenesis) after SE induction. Immunofluorescence staining, high-performance liquid chromatography, and Western blotting were performed to assess changes of astrocytes, adenosine, ADK, and ADK receptors (including A1R, A2aR, A2bR, and A3R) in hippocampus. The expression level of glial fibrillary acidic protein significantly increased from latent to late chronic phase. The concentration of adenosine sharply increased in acute phase and gradually decreased in the remaining phases of post-SE, being significantly lower than in the control group in late chronic phase. Protein levels of A1R and A2aR in post-SE models increased in acute phase, whereas A2bR and A3R protein expression decreased in latent phase, chronic phase, and late chronic phase following post-SE epileptogenesis. Protein expression of ADK significantly increased during latent phase, chronic phase, and late chronic phase of post-SE epileptogenesis. In conclusion, the levels of adenosine and protein expression of A1R and A2R significantly increased during acute phase of post-SE. During the remaining phases of post-SE epileptogenesis, there was imbalance among astrocytes, adenosine, adenosine receptors, and ADK. Regulation of the ADK/adenosine system may provide potential treatment strategies for epileptogenesis.  相似文献   

2.
Epileptogenesis, induced by status epilepticus (SE), is a chronic process, and intervention in this progress may prevent chronic epilepsy. It has been proposed that DNA methylation might be related with epileptogenesis. RASgrf1 has a differentially methylated region at the promoter which can silence gene expression. We have previously observed the down-regulation of RASgrf1 in epilepsy patients and proved that hypermethylation of RASgrf1 reaches maximal level at the latent period in mice after kainate-induced SE (KA mice), with corresponding alteration of RASgrf1 expression. In the present study, N-phthalyl-L-tryptophan (RG108), a DNA methyltransferase inhibitor, was applied in KA mice at latent phase and the behavior, electroencephalogram and pathological changes were observed in chronic phase. Methylation and expression of RASgrf1 were determined by polymerase chain reaction (PCR), western blotting, and bisulfite sequencing PCR. The results showed that the incidence of spontaneous recurrent seizures (SRS) was significantly lower in the RG108 group than the normal saline (NS) group. Subgroup analysis showed significant hypermethylation and lower expression of RASgrf1 in the RG108–SRS subgroup and the NS–SRS subgroup but not in the RG108–NSRS (no SRS) subgroup and the NS–NSRS subgroup compared with the control group. No significant difference was found between the RG108–SRS and NS–SRS subgroups. Meanwhile, hippocampal neuronal loss was observed in RG108–SRS and NS–SRS subgroups. We thus demonstrated that RG108 could modify the progression of epileptogenesis after KA induced SE and prevent chronic epilepsy. Meanwhile, hypermethylation of RASgrf1 after KA induced SE could be reversed with corresponding changes of RASgrf1 expression. Additionally, we speculated that RASgrf1 might be a potential epigenetic mediator in epileptogenesis and chronic epilepsy.  相似文献   

3.
Chen  Siyu  Zeng  Xiangchang  Zong  Wenjing  Wang  Xintong  Chen  Lulu  Zhou  Luping  Li  Chaopeng  Huang  Qi  Huang  Xinyi  Zeng  Guirong  Hu  Kai  Ouyang  Dong-Sheng 《Neurochemical research》2019,44(2):472-484

Neuroinflammation and imbalance of neurotransmitters play pivotal roles in seizures and epileptogenesis. Aucubin (AU) is an iridoid glycoside derived from Eucommia ulmoides that possesses anti-inflammatory and neuroprotective effects. However, the anti-seizure effects of AU have not been reported so far. The present study was designed to investigate the effects of AU on pilocarpine (PILO) induced seizures and its role in the regulation of neuroinflammation and neurotransmission. We found that AU reduced seizure intensity and prolonged the latency of seizures. AU significantly attenuated the activation of astrocytes and microglia and reduced the levels of interleukine-1 beta (IL-1β), high mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α). Furthermore, the contents of γ-aminobutyric acid (GABA) were increased while the levels of glutamate were decreased in the hippocampus with AU treatment. The expression of γ-aminobutyric acid type A receptor subunit α1 (GABAARα1) and glutamate transporter-1 (GLT-1) protein were up-regulated in AU treatment group. However, AU had no significant effect on N-methyl-d-aspartate receptor subunit 2B (NR2B) expression in status epilepticus (SE). In conclusion, our findings provide the first evidence that AU can exert anti-seizure effects by attenuating gliosis and regulating neurotransmission. The results suggest that AU may be developed as a drug candidate for the treatment of epilepsy.

  相似文献   

4.
GABAA receptors, the major mediators of fast inhibitory neuronal transmission, are heteropentameric glycoproteins assembled from a panel of subunits, usually including α and β subunits with or without a γ2 subunit. The α1β2γ2 receptor is the most abundant GABAA receptor in brain. Co-expression of γ2 with α1 and β2 subunits causes conformational changes, increases GABAA receptor channel conductance, and prolongs channel open times. We reported previously that glycosylation of the three β2 subunit glycosylation sites, N32, N104 and N173, was important for α1β2 receptor channel gating. Here, we examined the hypothesis that steric effects or conformational changes caused by γ2 subunit co-expression alter the glycosylation of partnering β2 subunits. We found that co-expression of γ2 subunits hindered processing of β2 subunit N104 N-glycans in HEK293T cells. This γ2 subunit-dependent effect was strong enough that a decrease of γ2 subunit expression in heterozygous GABRG2 knockout (γ2+/?) mice led to appreciable changes in the endoglycosidase H digestion pattern of neuronal β2 subunits. Interestingly, as measured by flow cytometry, γ2 subunit surface levels were decreased by mutating each of the β2 subunit glycosylation sites. The β2 subunit mutation N104Q also decreased GABA potency to evoke macroscopic currents and reduced conductance, mean open time and open probability of single channel currents. Collectively, our data suggested that γ2 subunits interacted with β2 subunit N-glycans and/or subdomains containing the glycosylation sites, and that γ2 subunit co-expression-dependent alterations in the processing of the β2 subunit N104 N-glycans were involved in altering the function of surface GABAA receptors.  相似文献   

5.
Acute and chronic ethanol (EtOH) administration is known to affect function, surface expression, and subunit composition of γ-aminobutyric acid (A) receptors (GABAARs) in different parts of the brain, which is believed to play a major role in alcohol dependence and withdrawal symptoms. The basolateral amygdala (BLA) participates in anxiety-like behaviors including those induced by alcohol withdrawal. In the present study we assessed the changes in cell surface levels of select GABAAR subunits in the BLA of a rat model of alcohol dependence induced by chronic intermittent EtOH (CIE) treatment and long-term (>40 days) withdrawal and investigated the time-course of such changes after a single dose of EtOH (5 g/kg, gavage). We found an early decrease in surface expression of α4 and δ subunits at 1 h following single dose EtOH treatment. At 48 h post-EtOH and after CIE treatment there was an increase in α4 and γ2, while α1, α2, and δ surface expression were decreased. To relate functional changes in GABAARs to changes in their subunit composition we analyzed miniature inhibitory postsynaptic currents (mIPSCs) and the picrotoxin-sensitive tonic current (Itonic) 48 h after EtOH intoxication. The Itonic magnitude and most of the mIPSC kinetic parameters (except faster mIPSC decay) were unchanged at 48 h post-EtOH. At the same time, Itonic potentiation by acute EtOH was greatly reduced, whereas mIPSCs became significantly more sensitive to potentiation by acute EtOH. These results suggest that EtOH intoxication-induced GABAAR plasticity in the BLA might contribute to the diminished sedative/hypnotic and maintained anxiolytic effectiveness of EtOH.  相似文献   

6.
Ethanol causes pathological changes in GABAA receptor trafficking and function. These changes are mediated in part by ethanol activation of protein kinase A (PKA). The current study investigated the expression of the GABAA α1 and α4 subunits and the kinase anchoring protein AKAP150, as well as bicuculline-induced seizure threshold, at baseline and following acute injection of ethanol (3.5 g/kg IP) in a mouse line lacking the regulatory RIIβ subunit of PKA. Whole cerebral cortices were harvested at baseline, 1 h, or 46 h following injection of ethanol or saline and subjected to fractionation and western blot analysis. Knockout (RIIβ?/?) mice had similar baseline levels of PKA RIIα and GABAA α1 and α4 subunits compared to wild type (RIIβ+/+) littermates, but had deficits in AKAP150. GABAA α1 subunit levels were decreased in the P2 fraction of RIIβ?/?, but not RIIβ+/+, mice following 1 h ethanol, an effect that was driven by decreased α1 expression in the synaptic fraction. GABAA α4 subunits in the P2 fraction were not affected by 1 h ethanol; however, synaptic α4 subunit expression was increased in RIIβ+/+, but not RIIβ?/? mice, while extrasynaptic α4 and δ subunit expression were decreased in RIIβ?/?, but not RIIβ+/+ mice. Finally, RIIβ knockout was protective against bicuculline-induced seizure susceptibility. Overall, the results suggest that PKA has differential roles in regulating GABAA receptor subunits. PKA may protect against ethanol-induced deficits in synaptic α1 and extrasynaptic α4 receptors, but may facilitate the increase of synaptic α4 receptors.  相似文献   

7.
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.  相似文献   

8.
N-Ethylmaleimide (NEM)-sensitive factor (NSF) associates with soluble NSF attachment protein (SNAP), that binds to SNAP receptors (SNAREs) including syntaxin, SNAP25, and synaptobrevin. The complex of NSF/SNAP/SNAREs plays a critical role in the regulation of vesicular traffic. The present study investigated NEM-regulated α7 ACh receptor translocation. NSF associated with β-SNAP and the SNAREs syntaxin 1 and synaptobrevin 2 in the rat hippocampus. NSF also associated with the α7 ACh receptor subunit, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, and the γ-aminobutyric acid A (GABAA) receptor γ2 subunit. NEM, an inhibitor of NSF, significantly dissociated the α7 ACh receptor subunit from a complex with NSF and increased cell surface localization of the receptor subunit, but such effect was not obtained with the GluA1, GluA2 or γ2 subunits. NEM, alternatively, dissociated synaptobrevin 2 from an assembly of NSF/β-SNAP/syntaxin 1/synaptobrevin 2. NEM significantly increased the rate of nicotine-triggered AMPA receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, in rat hippocampal slices. The results of the present study indicate that NEM releases the α7 ACh receptor subunit and synaptobrevin 2 from an assembly of α7 ACh receptor subunit/NSF/β-SNAP/syntaxin 1/synaptobrevin 2, thereby promoting delivery of the α7 ACh receptor subunit to presynaptic membrane.  相似文献   

9.
Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects.  相似文献   

10.
Seizure-triggered maladaptive neural plasticity and neuroinflammation occur during the latent period as a key underlying event in epilepsy chronicization. Previously, we showed that α-tocopherol (α-T) reduces hippocampal neuroglial activation and neurodegeneration in the rat model of kainic acid (KA)-induced status epilepticus (SE). These findings allowed us to postulate an antiepileptogenic potential for α-T in hippocampal excitotoxicity, in line with clinical evidence showing that α-T improves seizure control in drug-resistant patients. To explore neurobiological correlates of the α-T antiepileptogenic role, rats were injected with such vitamin during the latent period starting right after KA-induced SE, and the effects on circuitry excitability, neuroinflammation, neuronal death, and microRNA (miRNA) expression were investigated in the hippocampus. Results show that in α-T-treated epileptic rats, (1) the number of population spikes elicited by pyramidal neurons, as well as the latency to the onset of epileptiform-like network activity recover to control levels; (2) neuronal death is almost prevented; (3) down-regulation of claudin, a blood–brain barrier protein, is fully reversed; (4) neuroinflammation processes are quenched (as indicated by the decrease of TNF-α, IL-1β, GFAP, IBA-1, and increase of IL-6); (5) miR-146a, miR-124, and miR-126 expression is coherently modulated in hippocampus and serum by α-T. These findings support the potential of a timely intervention with α-T in clinical management of SE to reduce epileptogenesis, thus preventing chronic epilepsy development. In addition, we suggest that the analysis of miRNA levels in serum could provide clinicians with a tool to evaluate disease evolution and the efficacy of α-T therapy in SE.  相似文献   

11.
A GABA(A) receptor β3 subunit mutation, G32R, has been associated with childhood absence epilepsy. We evaluated the possibility that this mutation, which is located adjacent to the most N-terminal of three β3 subunit N-glycosylation sites, might reduce GABAergic inhibition by increasing glycosylation of β3 subunits. The mutation had three major effects on GABA(A) receptors. First, coexpression of β3(G32R) subunits with α1 or α3 and γ2L subunits in HEK293T cells reduced surface expression of γ2L subunits and increased surface expression of β3 subunits, suggesting a partial shift from ternary αβ3γ2L receptors to binary αβ3 and homomeric β3 receptors. Second, β3(G32R) subunits were more likely than β3 subunits to be N-glycosylated at Asn-33, but increases in glycosylation were not responsible for changes in subunit surface expression. Rather, both phenomena could be attributed to the presence of a basic residue at position 32. Finally, α1β3(G32R)γ2L receptors had significantly reduced macroscopic current density. This reduction could not be explained fully by changes in subunit expression levels (because γ2L levels decreased only slightly) or glycosylation (because reduction persisted in the absence of glycosylation at Asn-33). Single channel recording revealed that α1β3(G32R)γ2L receptors had impaired gating with shorter mean open time. Homology modeling indicated that the mutation altered salt bridges at subunit interfaces, including regions important for subunit oligomerization. Our results suggest both a mechanism for mutation-induced hyperexcitability and a novel role for the β3 subunit N-terminal α-helix in receptor assembly and gating.  相似文献   

12.
海仁酸致痫大鼠海马组织AMPA受体GluR2表达的变化   总被引:4,自引:2,他引:4  
目的 为了研究AMPA受体在癫痫发生中的作用。方法 本研究用免疫组织化学方法观察了海仁酸致痫大鼠海马组织AMPA GluR2受体的表达变化。结果 在侧脑室注射海仁酸后 1h ,4h ,12h ,2 4h及 7d ,大鼠海马CA3区及齿状回GluR2的表达明显减弱 ,显微图像分析 :与对照组相比 ,KA 4h ,KA 12h ,KA 2 4h ,KA 7d组大鼠海马组织GluR2阳性神经元平均光密度值降低 ,差异有显著性 (P <0 0 5 )。结论 在癫痫发作过程中AMPA受体 GluR2亚单位表达改变可能与癫痫发作导致的神经元损伤有密切关系。  相似文献   

13.
Kainic acid-induced status epilepticus leads to structural and functional changes in inhibitory GABAA receptors in the adult rat hippocampus, but whether similar changes occur in the developing rat is not known. We have used in situ hybridization to study status epilepticus-induced changes in the GABAAalpha1-alpha5, beta1-beta3, gamma1 and gamma2 subunit mRNA expression in the hippocampus of 9-day-old rats during 1 week after the treatment. Immunocytochemistry was applied to detect the alpha1, alpha2 and beta3 subunit proteins in the control and treated rats. In the saline-injected control rats, the alpha1 and alpha4 subunit mRNA expression significantly increased between the postnatal days 9-16, whereas those of alpha2, beta3 and gamma2 subunits decreased. The normal developmental changes in the expression of alpha1, alpha2, beta3 and gamma2 subunit mRNAs were altered after the treatment. The immunostainings with antibodies to alpha1, alpha2 and beta3 subunits confirmed the in situ hybridization findings. No neuronal death was detected in any hippocampal subregion in the treated rats. Our results show that status epilepticus disturbs the normal developmental expression pattern of GABAA receptor subunit in the rat hippocampus during the sensitive postnatal period of brain development. These perturbations could result in altered functional and pharmacological properties of GABAA receptors.  相似文献   

14.
Haemocyanin (Hc) is a copper-containing respiratory protein, floating freely dissolved in the hemolymph of many arthropod species. A typical haemocyanin is a hexamer or oligohexamer of six identical or similar subunits, with a molecular mass around 75 kDa each. In the crustaceans, the haemocyanins appear to be restricted to the remipedes and the malacostracans. We have investigated the haemocyanins of two freshwater shrimps, the Amano shrimp Caridina multidentata and the bamboo shrimp Atyopsis moluccensis. We obtained three full-length and one partial cDNA sequences of haemocyanin subunits from the Amano shrimp, which were assigned to the α- and γ-types of decapod haemocyanin subunits. Three complete and two partial haemocyanin cDNA sequences were obtained from the bamboo shrimp, which represent subunit types α, β and γ. This is the first time that sequences of all three subunit types of the decapod haemocyanins were obtained from a single species. However, mass spectrometry analyses identified only α- and γ-type subunits, suggesting that a β-subunit is not a major component of the native haemocyanin of the bamboo shrimp. Phylogenetic and molecular clock analyses showed that malacostracan haemocyanins commenced to diversify into distinct subunit types already ~515 million years ago. β-subunits diverged first, followed by α- and γ-type subunits ~396 million years ago. The haemocyanins of phyllocarids and peracarids form distinct clades within the α/γ-cluster. Within the Caridea, an early divergence of distinct α-type subunits occurred ~200 MYA. The tree of the γ-subunits suggests a common clade of the Caridea (shrimps) and Penaeidae (prawns).  相似文献   

15.
Abstract: The GABAA receptor is a heterooligomeric protein complex composed of multiple receptor subunits. Developmental changes in the pattern of expression of 11 GABAA receptor subunits in individual rat embryonic hippocampal neurons on days 1–21 in culture and acutely dissociated hippocampal neurons from postnatal day (PND) 5 rat pups were investigated using the technique of single-cell mRNA amplification. We demonstrate that multiple GABAA receptor subunits are expressed within individual hippocampal neurons, with most cells simultaneously expressing α1, α2, α5, β1, and γ2 mRNAs. Further, relative expression of several GABAA receptor subunit mRNAs changes significantly in embryonic hippocampal neurons during in vitro development, with the relative abundance (compared with β-actin) of α1, α5, and γ2 mRNAs increasing 2.3-, 2.7-, and 3.8-fold, respectively, from days 1 to 14, and β1 increasing 5-fold from days 1 to 21. In situ hybridization with antisense digoxigenin-labeled α1, β1, and γ2 RNA probes demonstrates a similar increase in expression of subunit mRNAs as embryonic hippocampal neurons mature in vitro. Relative abundances of α1, β1, and γ2 subunit mRNAs in acutely dissociated PND 5 hippocampal neurons are also significantly greater than in embryonic day 17 neurons on day 1 in vitro and exceed the peak values seen in cultured neurons on days 14–21, suggesting that GABAA receptor subunit mRNA expression within individual hippocampal neurons follows a similar, if somewhat delayed, developmental pattern in vitro compared with in vivo. These findings suggest that embryonic hippocampal neuronal culture provides a useful model in which to study the developmental regulation of GABAA receptor expression and that developmental changes in GABAA receptor subunit expression may underlie some of the differences in functional properties of GABAA receptors in neonatal and mature hippocampal neurons.  相似文献   

16.
Abstract: The γ-aminobutyric acidA (GABAA)/benzodiazepine (BZ) receptor is a pentamer composed of subunits belonging to several classes (α1–6, β1–4, γ1–4, δ, and ρ1 and ρ2). In situ hybridization, radioligand autoradiography, and immunocytochemistry were used to examine GABAA/BZ receptor α1, α6, β2, β3, and γ2 subunit expression in murine Purkinje, granule, and deep cerebellar neurons after in vivo ethanol exposure. Chronic ethanol treatment resulted in decreased α1 subunit mRNA expression in each cell type, whereas the expression of α6 and γ2 subunit mRNA levels increased; no changes were observed in the expression of β2 and β3 subunit mRNA. GABA and BZ agonist binding and antibody staining paralleled the changes in mRNA levels. Acute ethanol injection resulted in increased expression of α1 and β3 mRNAs, whereas levels of α6, β2, and γ2 mRNAs remained stable. Our results indicate that, in cerebellar neurons, the expression of specific GABAA/BZ receptor subunit mRNAs, polypeptides, and binding sites is independently regulated by in vivo administration of alcohol. The observed changes were not restricted to any one cerebellar cell type, because subunit expression in Purkinje, granule, and deep cerebellar cells was similarly affected.  相似文献   

17.
目的:观察海人藻酸(Kainic acid,KA)海马内注射后星形胶质细胞的变化及雷公藤甲素(TRP)对其的影响。方法:90只SD大鼠(200~220g)随机分为3组:右侧海马注射生理盐水后生理盐水灌胃作为对照组(NS NS),右侧海马注射海人藻酸后生理盐水灌胃干预组(KA NS),右侧海马注射海人藻酸后雷公藤甲素灌胃干预组(KA TRP)。动物存活1天,3天,5天,7天,14天后免疫组织化学结合图像分析技术观察海马内星形胶质细胞形态和数目的变化。结果:(KA NS)组海马内星形胶质细胞数目明显增多,胞体明显增大,突起变短,变粗,与(NS NS)组相比差别具有显著性(p<0.05);(KA TRP)组星形胶质细胞数量明显减少,胞体变小,突起变细长,与(KA NS)组相比差别具有显著性(P<0.05)。结论:KA注射后可导致大鼠海马内星形胶质细胞的激活,雷公藤甲素对KA诱导的星形胶质细胞的活化有抑制作用。  相似文献   

18.
Abstract: The α6 subunit of γ-aminobutyric type A receptors is a marker for cerebellar granule cells and is an attractive candidate to study cell-specific gene expression in the brain. The mouse α6 subunit gene has nine exons and spans ~14 kb. The largest intron (intron 8) is ~7 kb. For a minority of mRNAs, a missplice of the first exon was identified that disrupts the signal peptide and most likely results in the production of nonfunctional protein. The gene is transcribed from a TATA-less promoter that uses multiple start sites. Using transgenic mice, it was found that the proximal 0.5 kb of the rat α6 gene upstream region confers expression on a β-galactosidase reporter gene. One founder gave rise to a line with cerebellar granule cell-specific expression, although expression varied with lobule region. Other founders had ectopic but neuron-specific expression, with β-galactosidase found in cerebellar Purkinje cells, neocortex, thalamus, hippocampus, caudate-putamen, and inferior colliculi. Thus, we have defined a region containing the basal promoter of the α6 subunit gene and that confers neuron-specific expression.  相似文献   

19.
Learning and memory disorders accompanying epileptogenesis were studied in rats with the use of two experimental models of epilepsy, picrotoxin kindling and kainic treatment. Rise of exploratory activity and decrease in animal's capability for experimental extinction of a response were characteristic of the initial stage of epileptogenesis. It was suggested that a dysfunction of brain hippocampal system can be responsible for cognitive disorders. To reveal their mechanisms, lipid contents were determined in the neocortex and hippocampus in appropriate periods after exposure to epileptogenic factors. Long-term changes in hippocampal lipid spectrum were found five days after the exposure to kainic acid. In particular, after sodium valproate treatment (the compensation of kainic effects), the total content of phospholipids in hippocampus was decreased. The hippocampal sphingomyelin level dropped as a result of picrotoxin kindling. The sphingomyelin changes suggest some recovery processes in hippocampal cells and point to an adaptive role of membrane lipids in the mechanisms of the damaging epiptogenous effects.  相似文献   

20.
谷氨酸下调培养海马神经元AMPA受体G1uR2亚单位的表达   总被引:1,自引:0,他引:1  
目的 研究在癫痫发病过程中,谷氨酸对AMPA受体G1uR2亚单位表达变化的影响。方法 用RT-PCR和Western Blot方法观察谷氨酸诱导培养大鼠海马神经元AMPA受体G1uR2亚单位mRNA和蛋白的表达变化。结果 在谷氨酸刺激后2h,8h,12h,培养海马神经元G1uR2 mRNA和蛋白表达明显下降,与对照组相比,差异有显著性(P〈0.05),而非NMDA受体拮抗剂CNQX能阻断此变化。结论 在癫痫等疾病中,谷氨酸能通过激活AMAP/KA受体下调AMPA受体G1uR2亚单位的表达,参与发病过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号