共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks 总被引:3,自引:0,他引:3
MOTIVATION: An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions. RESULTS: On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs. AVAILABILITY: Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html 相似文献
2.
Background
MicroRNA (miRNA) sponges with multiple tandem miRNA binding sequences can sequester miRNAs from their endogenous target mRNAs. Therefore, miRNA sponge acting as a decoy is extremely important for long-term loss-of-function studies both in vivo and in silico. Recently, a growing number of in silico methods have been used as an effective technique to generate hypotheses for in vivo methods for studying the biological functions and regulatory mechanisms of miRNA sponges. However, most existing in silico methods only focus on studying miRNA sponge interactions or networks in cancer, the module-level properties of miRNA sponges in cancer is still largely unknown.Results
We propose a novel in silico method, called miRSM (miRNA Sponge Module) to infer miRNA sponge modules in breast cancer. We apply miRSM to the breast invasive carcinoma (BRCA) dataset provided by The Cancer Genome Altas (TCGA), and make functional validation of the computational results. We discover that most miRNA sponge interactions are module-conserved across two modules, and a minority of miRNA sponge interactions are module-specific, existing only in a single module. Through functional annotation and differential expression analysis, we also find that the modules discovered using miRSM are functional miRNA sponge modules associated with BRCA. Moreover, the module-specific miRNA sponge interactions among miRNA sponge modules may be involved in the progression and development of BRCA. Our experimental results show that miRSM is comparable to the benchmark methods in recovering experimentally confirmed miRNA sponge interactions, and miRSM outperforms the benchmark methods in identifying interactions that are related to breast cancer.Conclusions
Altogether, the functional validation results demonstrate that miRSM is a promising method to identify miRNA sponge modules and interactions, and may provide new insights for understanding the roles of miRNA sponges in cancer progression and development.3.
Background
The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically, and/or evolutionarily) associated, and such a priori known or pre-computed associations can provide support for appropriately grouping genes. One important association is the presence of one or more common cis-regulatory motifs. In organisms where these motifs are not known, their de novo detection, integrated into the clustering algorithm, can help to guide the process towards more biologically parsimonious solutions. 相似文献4.
Background
We consider the problem of reconstructing a gene regulatory network structure from limited time series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse, meaning the connectivity among genes is much less than full connectivity. We develop a method for network reconstruction based on compressive sensing, which takes advantage of the network’s sparseness.Results
For the case in which all genes are accessible for measurement, and there is no measurement noise, we show that our method can be used to exactly reconstruct the network. For the more general problem, in which hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost of experiments. For each problem, a set of numerical examples is presented.Conclusions
The method provides a guarantee on how well the inferred graph structure represents the underlying system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0400-4) contains supplementary material, which is available to authorized users. 相似文献5.
Imoto S Higuchi T Goto T Tashiro K Kuhara S Miyano S 《Journal of bioinformatics and computational biology》2004,2(1):77-98
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Microarray data do not contain enough information for constructing gene networks accurately in many cases. Our method adds biological knowledge to the estimation method of gene networks under a Bayesian statistical framework, and also controls the trade-off between microarray information and biological knowledge automatically. We conduct Monte Carlo simulations to show the effectiveness of the proposed method. We analyze Saccharomyces cerevisiae gene expression data as an application. 相似文献
6.
Background
Boolean network (BN) modeling is a commonly used method for constructing gene regulatory networks from time series microarray data. However, its major drawback is that its computation time is very high or often impractical to construct large-scale gene networks. We propose a variable selection method that are not only reduces BN computation times significantly but also obtains optimal network constructions by using chi-square statistics for testing the independence in contingency tables. 相似文献8.
We consider the problem of finding a subnetwork in a given biological network (i.e. target network) that is most similar to a given small query network. We aim to find the optimal solution (i.e. the subnetwork with the largest alignment score) with a provable confidence bound. There is no known polynomial time solution to this problem in the literature. Alon et al. has developed a state-of-the-art coloring method that reduces the cost of this problem. This method randomly colors the target network prior to alignment for many iterations until a user-supplied confidence is reached. Here we develop a novel coloring method, named k-hop coloring (k is a positive integer), that achieves a provable confidence value in a small number of iterations without sacrificing the optimality. Our method considers the color assignments already made in the neighborhood of each target network node while assigning a color to a node. This way, it preemptively avoids many color assignments that are guaranteed to fail to produce the optimal alignment. We also develop a filtering method that eliminates the nodes that cannot be aligned without reducing the alignment score after each coloring instance. We demonstrate both theoretically and experimentally that our coloring method outperforms that of Alon et al., which is also used by a number network alignment methods, including QPath and QNet, by a factor of three without reducing the confidence in the optimality of the result. Our experiments also suggest that the resulting alignment method is capable of identifying functionally enriched regions in the target network successfully. 相似文献
9.
Jutta Gebert Susanne Motameny Ulrich Faigle Christian V Forst Rainer Schrader 《Journal of computational biology》2008,15(2):185-194
In order to understand the behavior of a gene regulatory network, it is essential to know the genes that belong to it. Identifying the correct members (e.g., in order to build a model) is a difficult task even for small subnetworks. Usually only few members of a network are known and one needs to guess the missing members based on experience or informed speculation. It is beneficial if one can additionally rely on experimental data to support this guess. In this work we present a new method based on formal concept analysis to detect unknown members of a gene regulatory network from gene expression time series data. We show that formal concept analysis is able to find a list of candidate genes for inclusion into a partially known basic network. This list can then be reduced by a statistical analysis so that the resulting genes interact strongly with the basic network and therefore should be included when modeling the network. The method has been applied to the DNA repair system of Mycobacterium tuberculosis. In this application, our method produces comparable results to an already existing method of component selection while it is applicable to a broader range of problems. 相似文献
10.
11.
Logic of gene regulatory networks 总被引:1,自引:0,他引:1
12.
Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr. 相似文献
13.
Background
Despite the recognized importance of module discovery in biological networks to enhance our understanding of complex biological systems, existing methods generally suffer from two major drawbacks. First, there is a focus on modules where biological entities are strongly connected, leading to the discovery of trivial/well-known modules and to the inaccurate exclusion of biological entities with subtler yet relevant roles. Second, there is a generalized intolerance towards different forms of noise, including uncertainty associated with less-studied biological entities (in the context of literature-driven networks) and experimental noise (in the context of data-driven networks). Although state-of-the-art biclustering algorithms are able to discover modules with varying coherency and robustness to noise, their application for the discovery of non-dense modules in biological networks has been poorly explored and it is further challenged by efficiency bottlenecks.Methods
This work proposes Biclustering NETworks (BicNET), a biclustering algorithm to discover non-trivial yet coherent modules in weighted biological networks with heightened efficiency. Three major contributions are provided. First, we motivate the relevance of discovering network modules given by constant, symmetric, plaid and order-preserving biclustering models. Second, we propose an algorithm to discover these modules and to robustly handle noisy and missing interactions. Finally, we provide new searches to tackle time and memory bottlenecks by effectively exploring the inherent structural sparsity of network data.Results
Results in synthetic network data confirm the soundness, efficiency and superiority of BicNET. The application of BicNET on protein interaction and gene interaction networks from yeast, E. coli and Human reveals new modules with heightened biological significance.Conclusions
BicNET is, to our knowledge, the first method enabling the efficient unsupervised analysis of large-scale network data for the discovery of coherent modules with parameterizable homogeneity.14.
15.
Nakayama T Seno S Takenaka Y Matsuda H 《Journal of bioinformatics and computational biology》2011,9(Z1):75-86
The S-system model is one of the nonlinear differential equation models of gene regulatory networks, and it can describe various dynamics of the relationships among genes. If we successfully infer rigorous S-system model parameters that describe a target gene regulatory network, we can simulate gene expressions mathematically. However, the problem of finding an optimal S-system model parameter is too complex to be solved analytically. Thus, some heuristic search methods that offer approximate solutions are needed for reducing the computational time. In previous studies, several heuristic search methods such as Genetic Algorithms (GAs) have been applied to the parameter search of the S-system model. However, they have not achieved enough estimation accuracy. One of the conceivable reasons is that the mechanisms to escape local optima. We applied an Immune Algorithm (IA) to search for the S-system parameters. IA is also a heuristic search method, which is inspired by the biological mechanism of acquired immunity. Compared to GA, IA is able to search large solution space, thereby avoiding local optima, and have multiple candidates of the solutions. These features work well for searching the S-system model. Actually, our algorithm showed higher performance than GA for both simulation and real data analyses. 相似文献
16.
17.
Hartemink AJ 《Nature biotechnology》2005,23(5):554-555
18.
19.
Deciphering gene expression regulatory networks 总被引:11,自引:0,他引:11