首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.

Results

Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.

Conclusions

These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.  相似文献   

2.

Background

The purpose of this study was investigate the dose proportionality of a novel, once-daily, controlled-release formulation of hydromorphone that utilizes the OROS® Push-Pull? osmotic pump technology.

Methods

In an open-label, four-way, crossover study, 32 healthy volunteers were randomized to receive a single dose of OROS® hydromorphone 8, 16, 32, and 64 mg, with a 7-day washout period between treatments. Opioid antagonism was provided by three or four doses of naltrexone 50 mg, given at 12-hour intervals pre- and post-OROS® hydromorphone dosing. Plasma samples for pharmacokinetic analysis were collected pre-dose and at regular intervals up to 48 hours post-dose (72 hours for the 64-mg dose), and were assayed for hydromorphone concentration to determine peak plasma concentration (Cmax), time at which peak plasma concentration was observed (Tmax), terminal half-life (t1/2), and area under the concentration-time curve for zero to time t (AUC0-t) and zero to infinity (AUC0–∞). An analysis of variance (ANOVA) model on untransformed and dose-normalized data for AUC0-t, AUC0–∞, and Cmax was used to establish dose linearity and proportionality.

Results

The study was completed by 31 of 32 subjects. Median Tmax (12.0–16.0 hours) and mean t1/2 (10.6–11.0 hours) were found to be independent of dose. Regression analyses of Cmax, AUC0–48, and AUC0–∞ by dose indicated that the relationship was linear (slope, P ≤ 0.05) and that the intercept did not differ significantly from zero (P > 0.05). Similar analyses with dose-normalized parameters also indicated that the slope did not differ significantly from zero (P > 0.05).

Conclusion

The pharmacokinetics of OROS® hydromorphone are linear and dose proportional for the 8, 16, 32, and 64 mg doses.

Trial Registration

Clinical Trials.gov NCT00398957
  相似文献   

3.

Backround

A meta-analysis combining results from three genome-wide association studies and followed by large-scale replication identified six novel type 2 diabetes loci. Subsequent studies of the effect of these variants on estimates of the beta-cell function and insulin sensitivity have been inconclusive. We examined these variants located in or near the JAZF1 (rs864745), THADA (rs7578597), TSPAN8 (rs7961581), ADAMTS9 (rs4607103), NOTCH2 (rs10923931) and the CDC123/CAMK1D (rs12779790) genes for associations with measures of pancreatic beta-cell function and insulin sensitivity.

Methodology/Results

Oral and intravenous glucose stimulated insulin release (n = 849) and insulin sensitivity (n = 596) estimated from a hyperinsulinemic euglycemic clamp were measured in non-diabetic offspring of type 2 diabetic patients from five European populations. Assuming an additive genetic model the diabetes-associated major C-allele of rs4607103 near ADAMTS9 associated with reduced insulin-stimulated glucose uptake (p = 0.002) during a hyperinsulinemic euglycemic clamp. However, following intravenous and oral administration of glucose serum insulin release was increased in individuals with the C-allele (p = 0.003 and p = 0.01, respectively). A meta-analyse combining clamp and IVGTT data from a total of 905 non-diabetic individuals showed that the C-risk allele associated with decreased insulin sensitivity (p = 0.003) and increased insulin release (p = 0.002). The major T-allele of the intronic JAZF1 rs864745 conferring increased diabetes risk was associated with increased 2nd phase serum insulin release during an IVGTT (p = 0.03), and an increased fasting serum insulin level (p = 0.001). The remaining variants did not show any associations with insulin response, insulin sensitivity or any other measured quantitative traits.

Conclusion

The present studies suggest that the diabetogenic impact of the C-allele of rs4607103 near ADAMTS9 may in part be mediated through decreased insulin sensitivity of peripheral tissues.  相似文献   

4.

Background

Due to the increasing importance of identifying insulin resistance, a need exists to have a reliable mathematical model representing the glucose/insulin control system. Such a model should be simple enough to allow precise estimation of insulin sensitivity on a single patient, yet exhibit stable dynamics and reproduce accepted physiological behavior.

Results

A new, discrete Single Delay Model (SDM) of the glucose/insulin system is proposed, applicable to Intra-Venous Glucose Tolerance Tests (IVGTTs) as well as to multiple injection and infusion schemes, which is fitted to both glucose and insulin observations simultaneously. The SDM is stable around baseline equilibrium values and has positive bounded solutions at all times. Applying a similar definition as for the Minimal Model (MM) SI index, insulin sensitivity is directly represented by the free parameter KxgI of the SDM. In order to assess the reliability of Insulin Sensitivity determinations, both SDM and MM have been fitted to 40 IVGTTs from healthy volunteers. Precision of all parameter estimates is better with the SDM: 40 out of 40 subjects showed identifiable (CV < 52%) KxgI from the SDM, 20 out of 40 having identifiable SI from the MM. KxgI correlates well with the inverse of the HOMA-IR index, while SI correlates only when excluding five subjects with extreme SI values. With the exception of these five subjects, the SDM and MM derived indices correlate very well (r = 0.93).

Conclusion

The SDM is theoretically sound and practically robust, and can routinely be considered for the determination of insulin sensitivity from the IVGTT. Free software for estimating the SDM parameters is available.  相似文献   

5.

Objective:

Assessment of antilipolytic insulin action is important in obesity research, but extensive isotopic tracer studies are not always feasible. We evaluated whether an index of antilipolytic insulin action could be derived from readily available insulin and glycerol concentrations obtained during clamps or oral glucose tolerance tests (OGTT).

Design and Methods:

We evaluated data collected from 29 subjects who had undergone a 3‐stage hyperinsulinemic‐euglycemic clamp (4, 8, and 40 mU/m2/min) with infusion of [2H5]glycerol to calculate the glycerol rate of appearance (GLYRA). Exponential decay curves for GLYRA across insulin concentrations were generated for each individual and suppression of lipolysis was calculated as the insulin concentration needed to half‐maximally suppress GLYRA (GLYRA EC50). Areas under the curve for glycerol (GLYAUC) and insulin (INSAUC) were calculated and their products (INSAUC × GLYAUC) were calculated as an index of insulin suppression of lipolysis.

Results:

The clamp index was highly correlated with GLYRA EC50 (r = 0.862, P < 0.001), as was an OGTT‐derived index (r = 0.720, P < 0.01).

Conclusions:

These findings suggest that the products of the insulin and glycerol AUC from either a clamp or an OGTT are good biomarkers of the antilipolytic action of insulin and are comparable with direct measurement by isotopic tracer methods.  相似文献   

6.

Objective

Polypyrimidine tract-binding protein 1 (PTBP1) promotes stability and translation of mRNAs coding for insulin secretion granule proteins and thereby plays a role in β-cells function. We studied whether common genetic variations within the PTBP1 locus influence insulin secretion, and/or proinsulin conversion.

Methods

We genotyped 1,502 healthy German subjects for four tagging single nucleotide polymorphisms (SNPs) within the PTBP1 locus (rs351974, rs11085226, rs736926, and rs123698) covering 100% of genetic variation with an r2≥0.8. The subjects were metabolically characterized by an oral glucose tolerance test with insulin, proinsulin, and C-peptide measurements. A subgroup of 320 subjects also underwent an IVGTT.

Results

PTBP1 SNP rs11085226 was nominally associated with lower insulinogenic index and lower cleared insulin response in the OGTT (p≤0.04). The other tested SNPs did not show any association with the analyzed OGTT-derived secretion parameters. In the IVGTT subgroup, SNP rs11085226 was accordingly associated with lower insulin levels within the first ten minutes following glucose injection (p = 0.0103). Furthermore, SNP rs351974 was associated with insulin levels in the IVGTT (p = 0.0108). Upon interrogation of MAGIC HOMA-B data, our rs11085226 result was replicated (MAGIC p = 0.018), but the rs351974 was not.

Conclusions

We conclude that common genetic variation in PTBP1 influences glucose-stimulated insulin secretion. This underlines the importance of PTBP1 for beta cell function in vivo.  相似文献   

7.
8.

Background

Foam cell formation in diabetic patients often occurs in the presence of high insulin and glucose levels. To test whether hyperinsulinemic hyperglycemic conditions affect foam cell differentiation, we examined gene expression, cytokine production, and Akt phosphorylation in human monocyte-derived macrophages incubated with two types of oxidized low density lipoprotein (LDL), minimally modified LDL (mmLDL) and extensively oxidized LDL (OxLDL).

Methods and results

Using Affymetrix GeneChip® arrays, we found that several genes directly related to insulin signaling were changed. The insulin receptor and glucose-6-phosphate dehydrogenase were upregulated by mmLDL and OxLDL, whereas insulin-induced gene 1 was significantly down-regulated. In hyperinsulinemic hyperglycemic conditions, modified LDL upregulated Akt phosphorylation and expression of the insulin-regulated aminopeptidase. The level of proinflammatory cytokines, IL-lβ, IL-12, and IL-6, and of a 5-lipoxygenase eicosanoid, 5-hydroxyeicosatetraenoic acid (5-HETE), was also increased.

Conclusion

These results suggest that the exposure of macrophages to modified low density lipoproteins in hyperglycemic hyperinsulinemic conditions affects insulin signaling and promotes the release of proinflammatory stimuli, such as cytokines and eicosanoids. These in turn may contribute to the development of insulin resistance.  相似文献   

9.

Background

Metabolic syndrome is a cluster of common cardiovascular risk factors that includes hypertension and insulin resistance. Hypertension and diabetes mellitus are frequent comorbidities and, like metabolic syndrome, increase the risk of cardiovascular events. Telmisartan, an antihypertensive agent with evidence of partial peroxisome proliferator-activated receptor activity-gamma (PPARγ) activity, may improve insulin sensitivity and lipid profile in patients with metabolic syndrome.

Methods

In a double-blind, parallel-group, randomized study, patients with World Health Organization criteria for metabolic syndrome received once-daily doses of telmisartan (80 mg, n = 20) or losartan (50 mg, n = 20) for 3 months. At baseline and end of treatment, fasting and postprandial plasma glucose, insulin sensitivity, glycosylated haemoglobin (HBA1c) and 24-hour mean systolic and diastolic blood pressures were determined.

Results

Telmisartan, but not losartan, significantly (p < 0.05) reduced free plasma glucose, free plasma insulin, homeostasis model assessment of insulin resistance and HbAic. Following treatment, plasma glucose and insulin were reduced during the oral glucose tolerance test by telmisartan, but not by losartan. Telmisartan also significantly reduced 24-hour mean systolic blood pressure (p < 0.05) and diastolic blood pressure (p < 0.05) compared with losartan.

Conclusion

As well as providing superior 24-hour blood pressure control, telmisartan, unlike losartan, displayed insulin-sensitizing activity, which may be explained by its partial PPARγ activity.  相似文献   

10.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

11.

Aims

Alkali stress (AS) is an important agricultural contaminant and has complex effects on plant metabolism, specifically root physiology. The aim of this study was to test the role of nitrogen metabolism regulation in alkali tolerance of rice variety 'Nipponbare'.

Methods

In this study, the rice seedlings were subjected to salinity stress (SS) or AS. Growth, the contents of inorganic ions, NH 4 + -nitrogen (free amino acids), and NO 3 ? -nitrogen in the stressed seedlings were then measured. The expression of some critical genes involved in nitrogen metabolism were also assayed to test their roles in the regulation of nitrogen metabolism during adaptation of rice variety 'Nipponbare' to AS.

Results

AS showed a stronger inhibiting effect on rice variety 'Nipponbare' growth than SS. AS may have more complex effects on nitrogen metabolism than SS.

Conclusions

Effects of AS on the nitrogen metabolism of rice variety 'Nipponbare' mainly comprised two mechanisms. Firstly, in roots, AS caused the reduction of NO 3 ? content, which caused two harmful consequences, the large downregulation of OsNR1 expression and the subsequent reduction of NH 4 + production in roots. On the other hand, under AS (pH, 9.11), almost all the NH 4 + was changed to NH3, which caused a severe deficiency of NH 4 + surrounding the roots. Both events might cause a severe deficiency of NH 4 + in roots. Under AS, the increased expression of several OsAMT family members in roots might be an adaptative response to the reduction of NH 4 + content in roots or the NH 4 + deficiency in rhizosphere. Also, the down-regulation of OsNADH-GOGAT and OsGS1;2 in roots might be due to NH 4 + deficiency in roots. Secondly, in shoots, AS caused a larger acuumulatiuon of Na+, which possibly affected photorespiration and led to a continuous decrease of NH 4 + production in shoots, and inhibited the expression of OsFd-GOGAT and OsGS2 in chloroplasts.  相似文献   

12.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

13.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

14.

Background

Insulin resistance and type 2 diabetes are more prevalent in people of South Asian ethnicity than in people of Western European origin. To investigate the source of these differences, we compared insulin sensitivity, insulin secretion, glucose and lipid metabolism in South Asian and Nordic subjects with type 2 diabetes.

Methods

Forty-three Nordic and 19 South Asian subjects with type 2 diabetes were examined with intra-venous glucose tolerance test, euglycemic clamp including measurement of endogenous glucose production, indirect calorimetry measuring glucose and lipid oxidation, and dual x-ray absorptiometry measuring body composition.

Results

Despite younger mean ± SD age (49.7±9.4 vs 58.3±8.3 years, p = 0.001), subjects of South Asian ethnicity had the same diabetes duration (9.3±5.5 vs 9.6±7.0 years, p = 0.86), significantly higher median [inter-quartile range] HbA1c (8.5 [1.6] vs 7.3 [1.6] %, p = 0.024) and lower BMI (28.7±4.0 vs 33.2±4.7 kg/m2, p<0.001). The South Asian group exhibited significantly higher basal endogenous glucose production (19.1 [9.1] vs 14.4 [6.8] µmol/kgFFM⋅min, p = 0.003). There were no significant differences between the groups in total glucose disposal (39.1±20.4 vs 39.2±17.6 µmol/kgFFM⋅min, p = 0.99) or first phase insulin secretion (AUC0–8 min: 220 [302] vs 124 [275] pM, p = 0.35). In South Asian subjects there was a tendency towards positive correlations between endogenous glucose production and resting and clamp energy expenditure.

Conclusions

Subjects of South Asian ethnicity with type 2 diabetes, despite being younger and leaner, had higher basal endogenous glucose production, indicating higher hepatic insulin resistance, and a trend towards higher use of carbohydrates as fasting energy substrate compared to Nordic subjects. These findings may contribute to the understanding of the observed differences in prevalence of type 2 diabetes between the ethnic groups.  相似文献   

15.

Background and aims

Being able to monitor the hydration status of a plant would be useful to breeding programs and to providing insight into adaptation to water-limited environments, but most current methods are destructive or laborious. We evaluated novel non-invasive pressure probes (commercial name: ZIM-probe) for their potential in monitoring the water status of wheat (Triticum aestivum L.) leaves.

Methods

The probes consist of miniature pressure sensors that clamp to the leaves via magnets and detect relative changes in hydration status. Probes were clamped to leaves of six individual plants of the cultivar Wyalkatchem at the stem elongation stage and compared against traditional plant water relations measurements.

Results

Output from the probes, called patch-pressure (P p ), correlated well with leaf water potential and transpiration of individual plants. Variation between plants in the original clamp pressure exerted by the magnets and leaf individual properties led to variations in the amplitude of the diurnal P p profiles, but not in the kinetics of the curves where P p responded simultaneously in all plants to changes in the ambient environment (light and temperature).

Conclusions

Drying and rewatering cycles and analysis of the curve kinetics identified several methods that can be used to test comparisons of water status monitoring of wheat genotypes under water deficit.  相似文献   

16.

Background and aims

Plant physiological traits and their relation to soil N availability was investigated as regulators of the distribution of understory shrub species along a slope in a Japanese cedar (Cryptomeria japonica) plantation in central Japan.

Methods

At the study site, previous studies demonstrated that both net and gross soil nitrification rates are high on the lower slope and there are dramatic declines in different sections of the slope gradient. We examined the distributions of understory plant species and their nitrate (NO 3 ? -N) use traits, and compared the results with the soil traits.

Results

Our results show that boundaries between different dominant understory species correspond to boundaries between different soil types. Leucosceptrum stellipilum occurs on soil with high net and gross nitrification rates. Hydrangea hirta is dominant on soil with high net and low gross nitrification rates. Pieris japonica occurs on soil with very low net and gross nitrification rates. Dominant understory species have species-specific physiological traits in their use of NO 3 ? -N. Pieris japonica lacks the capacity to use NO 3 ? -N as a N source, but other species do use NO 3 ? -N. Lindera triloba, whose distribution is unrelated to soil NO 3 ? -N availability, changes the extent to which it uses NO 3 ? -N in response to soil NO 3 ? -N availability.

Conclusions

Our results indicate that differences in the physiological capabilities and adaptabilities of plant species in using NO 3 ? -N as a N source regulate their distribution ranges. The identity of the major form of available soil N is therefore an environmental factor that influences plant distributions.  相似文献   

17.
18.
Obesity caused by feeding of a high-fat diet (HFD) is associated with an increased activation of c-Jun NH2-terminal kinase 1 (JNK1). Activated JNK1 is implicated in the mechanism of obesity-induced insulin resistance and the development of metabolic syndrome and type 2 diabetes. Significantly, Jnk1/ mice are protected against HFD-induced obesity and insulin resistance. Here we show that an ablation of the Jnk1 gene in skeletal muscle does not influence HFD-induced obesity. However, muscle-specific JNK1-deficient (MKO) mice exhibit improved insulin sensitivity compared with control wild-type (MWT) mice. Thus, insulin-stimulated AKT activation is suppressed in muscle, liver, and adipose tissue of HFD-fed MWT mice but is suppressed only in the liver and adipose tissue of MKO mice. These data demonstrate that JNK1 in muscle contributes to peripheral insulin resistance in response to diet-induced obesity.Obesity is a major risk factor for the development of insulin resistance, hyperglycemia, and metabolic syndrome that can lead to β-cell dysfunction and type 2 diabetes (8). The prevalence of human obesity represents a serious health problem in the United States. It is therefore important that we obtain a detailed understanding of the molecular mechanism that accounts for obesity-induced insulin resistance. Recent progress has led to the identification of signal transduction pathways that may mediate the effects of obesity on insulin resistance (14, 23).c-Jun NH2-terminal kinase 1 (JNK1) represents one signaling pathway that has been implicated in the pathogenesis of metabolic syndrome and type 2 diabetes (21). JNK1 is activated when mice are fed a high-fat diet (HFD) (7). Moreover, Jnk1/ mice are protected against HFD-induced insulin resistance (7). The mechanism of protection is mediated, in part, by the failure of Jnk1/ mice to develop HFD-induced obesity (7). However, JNK1 can regulate insulin resistance independently of obesity. Thus, mice with an adipose tissue-specific JNK1 deficiency develop normal diet-induced obesity but exhibit selective protection against HFD-induced insulin resistance in both the liver and adipose tissue (16). These data indicate that adipose tissue JNK1 plays a critical role during the development of HFD-induced insulin resistance.The liver plays a key role in the insulin-stimulated disposal of blood glucose during the postprandial state because of reduced gluconeogenesis and increased glycogen synthesis (17). However, glucose uptake by skeletal muscle also makes a major contribution to insulin-stimulated glucose disposal (17). Muscle may therefore be an important target of obesity-induced JNK1 signaling and the regulation of glucose homeostasis.The purpose of this study was to test the role of JNK1 in muscle. Our approach was to examine the effect of a muscle-specific ablation of the Jnk1 gene in mice. We found that HFD-fed control wild-type (MWT) mice and muscle-specific JNK1-deficient (MKO) mice became similarly obese. However, MKO mice were selectively protected against HFD-induced insulin resistance. This analysis demonstrates that muscle JNK1 contributes to the effects of obesity on insulin resistance.  相似文献   

19.

Background and aims

Through recruitment, plants establish in novel environments. Recruitment also is the stage where plants undergo the highest mortality. We investigate the recruitment niche for Microstegium vimineum, an annual grass from East Asia spreading throughout eastern North American forests.

Methods

Current observational and greenhouse research indicates that M. vimineum recruitment may be inhibited by leaf litter and promoted by soil moisture; we use field studies to experimentally test how these factors influence M. vimineum germination, seedling survival and reproduction. Specifically, we introduce M. vimineum seeds into forest microhabitats with experimentally varied levels of soil moisture and leaf litter.

Results

Soil moisture increases M. vimineum germination regardless of leaf litter thickness and ameliorates seedling mortality in deep leaf litter. Seed production per m2 increases with watering, reflecting higher germination and survival, whereas per capita seed production increases with leaf litter thickness, reflecting density-dependent limits on seed production.

Conclusions

The interactive effects of varied levels of soil moisture and leaf litter thickness on key M. vimineum life history stages highlight the need to consider multiple drivers, such as rainfall and local forest disturbance, when assessing how soil properties influence the establishment of invasive plants.  相似文献   

20.

Background

Uncontrolled hyperglycemia is the main risk factor in the development of diabetic vascular complications. The endothelial cells are the first cells targeted by hyperglycemia. The mechanism of endothelial injury by high glucose is still poorly understood. Heparanase production, induced by hyperglycemia, and subsequent degradation of heparan sulfate may contribute to endothelial injury. Little is known about endothelial injury by heparanase and possible means of preventing this injury.

Objectives

To determine if high glucose as well as heparanase cause endothelial cell injury and if insulin, heparin and bFGF protect cells from this injury.

Methods

Cultured porcine aortic endothelial cells were treated with high glucose (30 mM) and/or insulin (1 U/ml) and/or heparin (0.5 μg/ml) and /or basic fibroblast growth factor (bFGF) (1 ng/ml) for seven days. Cells were also treated with heparinase I (0.3 U/ml, the in vitro surrogate heparanase), plus insulin, heparin and bFGF for two days in serum free medium. Endothelial cell injury was evaluated by determining the number of live cells per culture and lactate dehydrogenase (LDH) release into medium expressed as percentage of control.

Results

A significant decrease in live cell number and increase in LDH release was found in endothelial cells treated with high glucose or heparinase I. Insulin and/or heparin and/or bFGF prevented these changes and thus protected cells from injury by high glucose or heparinase I. The protective ability of heparin and bFGF alone or in combination was more evident in cells damaged with heparinase I than high glucose.

Conclusion

Endothelial cells injured by high glucose or heparinase I are protected by a combination of insulin, heparin and bFGF, although protection by heparin and/or bFGF was variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号