首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang P  Hu H 《Glycobiology》2012,22(2):235-247
Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in the formation of a phosphoryl glycan branch on O-linked mannose or it modifies complex N- and mucin O-glycans. In this study, we overexpressed LARGE in neural stem cells deficient in protein O-mannosyltransferase 2 (POMT2), an enzyme required for O-mannosyl glycosylation. The results showed that overexpressing LARGE did not lead to hyperglycosylation of α-DG in POMT2 knockout (KO) cells but did generate IIH6C4 and VIA4-1 immunoreactivity and laminin-binding activity. Additionally, overexpressing LARGE in cells deficient in both POMT2 and α-DG generated laminin-binding IIH6C4 immunoreactivity. These results indicate that LARGE expression resulted in the glycosylation of proteins other than α-DG in the absence of O-mannosyl glycosylation. The IIH6C4 immunoreactivity generated in double-KO cells was largely removed by treatment either with peptide N-glycosidase F or with cold aqueous hydrofluoric acid, suggesting that LARGE expression caused phosphoryl glycosylation of N-glycans. However, the glycosylation of α-DG by LARGE is dependent on POMT2, indicating that LARGE expression only modifies O-linked mannosyl glycans of α-DG. Thus, LARGE expression mediates the phosphoryl glycosylation of not only O-mannosyl glycans including those on α-DG but also N-glycans on proteins other than α-DG.  相似文献   

2.
A possible general corollary between 1-receptor density in brown adipose tissue and the degree of activation of the tissue was investigated. For this purpose, the effect of cafeteria feeding on 1-adrenergic receptors in brown adipose tissue of seven-week-old female rats was studied by the use of the 1-antagonist (3H)prazosin. In cafeteria-fed rats, the KD of the 1-receptor for (3H)prazosin was unchanged (about 0.35 nM), but the receptor density was doubled (up to 40 fmol per mg of membrane protein). This was also observed when the results were expressed per unit of a plasma-membrane marker (5-nucleotidase). It was concluded that an increased 1-receptor density is seen not only in cold-acclimated rats, but also in other conditions where brown fat is activated, and a possible general physiological significance of 1-adrenergic pathways in brown adipose tissue is discussed.  相似文献   

3.
α-Dystroglycan (α-DG) plays crucial roles in maintaining the stability of cells. We demonstrated previously that the N-terminal domain of α-DG (α-DG-N) is secreted by cultured cells into the culture medium. In the present study, to clarify its function in vivo, we generated a monoclonal antibody against α-DG-N and investigated the secretion of α-DG-N in human cerebrospinal fluid (CSF). Interestingly, we found that a considerable amount of α-DG-N was present in CSF. α-DG-N in CSF was a sialylated glycoprotein with both N- and O-linked glycan. These observations suggest that secreted α-DG-N may be transported via CSF and have yet unidentified effects on the nervous system.  相似文献   

4.
Three 1AR subtypes have been cloned so far and are designated as 1a, 1b, and 1d. Organspecific distribution pattern and subtype-specific effects are known but not fully understood. To address a cell-type specific expression pattern in the heart we investigated expression pattern of 1AR subtypes on RNA and proteinlevel in heart tissue, cultured cardiomyocytes and nonmyocytes of the rat. Each 1ARsubtype mRNA was present in neonatal and adult rat heart culture but the relative distribution pattern was significantly different. While the 1aAR subtype is preferentially expressed in adult cardiomyocytes, the 1bAR subtype was preferentially expressed in the nonmyocyte cell fraction. The RTPCR results were confirmed by Westernblotting (1b) and immunocytochemical studies. Incubation with an 1agonist (phenylephrine) for 72 h led to a significant reduction of the 1bAR in neonatal heart cell culture on both mRNA and protein level. In contrast, incubation with an 1antagonist (prazosin) induced a 1.6 fold upregulation of the 1aAR mRNA without significant effects on radioligand binding and functional assay. The results indicate a distribution pattern of the 1AR subtype which is specific for cell type and ontogeny of the rat heart and may be regulated by adrenergic agents.  相似文献   

5.

Background

LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored.

Methodology/Principal Findings

In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage.

Conclusions/Significance

This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation and α-dystroglycan hyperglycosylation in muscle should be safe.  相似文献   

6.
7.
Two series of analogues of the tetrahydroprotoberberine (THPB) alkaloid (±)-stepholidine that (a) contain various alkoxy substituents at the C10 position and, (b) were de-rigidified with respect to (±)-stepholidine, were synthesized and evaluated for affinity at dopamine and σ receptors in order to evaluate effects on D3 and σ2 receptor affinity and selectivity. Small n-alkoxy groups are best tolerated by D3 and σ2 receptors. Among all compounds tested, C10 methoxy and ethoxy analogues (10 and 11 respectively) displayed the highest affinity for σ2 receptors as well as σ2 versus σ1 selectivity and also showed the highest D3 receptor affinity. De-rigidification of stepholidine resulted in decreased affinity at all receptors evaluated; thus the tetracyclic THPB framework is advantageous for affinity at dopamine and σ receptors. Docking of the C10 analogues at the D3 receptor, suggest that an ionic interaction between the protonated nitrogen atom and Asp110, a H-bond interaction between the C2 phenol and Ser192, a H-bond interaction between the C10 phenol and Cys181 as well as hydrophobic interactions of the aryl rings to Phe106 and Phe345, are critical for high affinity of the compounds.  相似文献   

8.
9.
10.
The aggregation of amyloid-β (Aβ) peptides is believed to be a major factor in the onset and progression of Alzheimer's disease. Molecules binding with high affinity and selectivity to Aβ-peptides are important tools for investigating the aggregation process. An Aβ-binding Affibody molecule, ZAβ3 , has earlier been selected by phage display and shown to bind Aβ(1-40) with nanomolar affinity and to inhibit Aβ-peptide aggregation. In this study, we create truncated functional versions of the ZAβ3 Affibody molecule better suited for chemical synthesis production. Engineered Affibody molecules of different length were produced by solid phase peptide synthesis and allowed to form covalently linked homodimers by S-S-bridges. The N-terminally truncated Affibody molecules ZAβ3 (12-58), ZAβ3 (15-58), and ZAβ3 (18-58) were produced in considerably higher synthetic yield than the corresponding full-length molecule ZAβ3 (1-58). Circular dichroism spectroscopy and surface plasmon resonance-based biosensor analysis showed that the shortest Affibody molecule, ZAβ3 (18-58), exhibited complete loss of binding to the Aβ(1-40)-peptide, while the ZAβ3 (12-58) and ZAβ3 (15-58) Affibody molecules both displayed approximately one order of magnitude higher binding affinity to the Aβ(1-40)-peptide compared to the full-length Affibody molecule. Nuclear magnetic resonance spectroscopy showed that the structure of Aβ(1-40) in complex with the truncated Affibody dimers is very similar to the previously published solution structure of the Aβ(1-40)-peptide in complex with the full-length ZAβ3 Affibody molecule. This indicates that the N-terminally truncated Affibody molecules ZAβ3 (12-58) and ZAβ3 (15-58) are highly promising for further engineering and future use as binding agents to monomeric Aβ(1-40).  相似文献   

11.
Summary In this study, we have used an 1-adrenergic receptor photoaffinity ligand, 2-[4-(4-azido-3-iodo-benzoyl)-piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline (125I-APD), to label covalently the 1-adrenergic receptor in a smooth muscle cell line. Our results indicate that in the absence of light, (125I)APD binds reversibly to a site in the DDT1 MF-2 cell membranes having pharmacological characteristics of an 1-adrenergic receptor. Following incorporation of (125I)ADP into partially purified membranes a single labeled band of protein with a Mr of 81 000 was visualized by autoradiography following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incorporation of (125I)-APD into this band was affected by adrenergic agonists and antagonists in a manner consistent with an 1-adrenergic interaction. Prazosin (1-selective) blocked incorporation of the label into the Mr = 81 000 protein while yohimbine (2-selective) did not. Of the adrenergic agonists, (–)-epinephrine and (–)-norepinephrine but not (–)-isoproterenol blocked labeling of the Mr – 81 000 protein. We conclude that the ligand binding site of the DDT1 MF-2 cell 1-adrenergic receptor resides in a Mr = 81 000 protein.  相似文献   

12.
To assess the effect of conformational mobility on receptor activity, the β-phenyl substituent of dopamine D(1) agonist ligands of the phenylbenzazepine class, (±)-6,6a,7,8,9,13b-hexahydro-5H-benzo[d]naphtho[2,1-b]azepine-11,12-diol (8), and its oxygen and sulfur bioisosteres 9 and 10, respectively, were synthesized as conformationally-restricted analogs of SKF38393, a dopamine D(1)-selective partial agonist. Compounds trans-8b, 9, and 10 showed binding affinity comparable to that of SKF38393, but functionally, they displayed only very weak agonist activity. These results suggest that the conformationally-restricted structure of the analogs cannot adopt a binding orientation that is necessary for agonist activity.  相似文献   

13.
The genome of Ashbya gossypii contains homologs of most of the genes that are part of the Saccharomyces cerevisiae pheromone-signal transduction cascade. However, we currently lack understanding of a potential sexual cycle for this pre-whole genome duplication hemiascomycete. The sequenced strain bears three identical copies encoding MATa. We show that the syntenic A. gossypii homolog of MFα1 (AFL062w) does not encode a mature α-factor peptide, but identified another gene, AAR163c, which encodes a candidate α-specific mating pheromone and is thus reannotated as AgMFα2. The expression of the AgSTE2α-factor receptor in an Scste2 S. cerevisiae MATa strain resulted in dosage-dependent growth arrest upon exposure to A. gossypiiα-factor, which indicated that the pheromone response was effectively coupled to the S. cerevisiae signal transduction cascade. Comparison of α-pheromones and α-pheromone receptors showed greater conservation between Eremothecium cymbalariae and S. cerevisiae than between A. gossypii and E. cymbalariae. We constructed A. gossypii strains deleted for the STE2 and STE3 pheromone receptors. These strains showed no phenotypic abnormalities and an ste2, ste3 double mutant is still able to sporulate. The deletion of STE12 as the downstream target of pheromone signalling, however, led to a hypersporulation phenotype.  相似文献   

14.
J. V. Jacobsen  R. B. Knox 《Planta》1973,112(3):213-224
Summary Gibberellic-acid(GA3)-induced -amylase has been localised in barley aleurone layers using cytochemical methods and light microscopy. Evidence obtained from the use of a starch substrate film method as well as immunofluorescence indicated that the first amylase to appear in the cell was associated with aleurone grains, apparently with the outer membrane, and also with the peripheral cytoplasm. In GA3-treated tissue, the amylase distribution was much more diffuse, although patchy, throughout the cytoplasm and it tended to accumulate in the endosperm side of the cell. The possibility that the aleurone grain membrane is the site of gibberellin-induced enzyme synthesis and that it proliferates to become rough endoplasmic reticulum is considered. Immunological information was obtained which supports earlier indications that induced -amylase consists of two different proteins, each with molecular heterogeneity.  相似文献   

15.
Mechanisms underlying virulence properties of Campylobacter jejuni have historically been difficult to identify. In this issue of Cell Host & Microbe, Hofreuter et al. (2008) show that C. jejuni's ability to metabolize glutamine, glutathione, and asparagine affects its ability to colonize specific host tissues. These findings reflect the emerging theme of bacterial physiology directly impacting pathogenesis.  相似文献   

16.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

17.
Methylated analogues of imidazoline related compounds (IRC) were prepared; their abilities to bind I(1) imidazoline receptors (I(1)Rs), I(2) imidazoline binding sites (I(2)BS) and α(2)-adrenoceptor subtypes (α(2)ARs) were assessed. Methylation of the heterocyclic moiety of IRC resulted in a significant loss of α(2)AR affinity. Amongst the selective ligands obtained, LNP 630 (4) constitutes the first highly selective I(1)R agent showing hypotensive activity after intravenous administration.  相似文献   

18.
α-Dystroglycan (α-DG) is a membrane-associated glycoprotein that interacts with several extracellular matrix proteins, including laminin and agrin. Aberrant glycosylation of α-DG disrupts its interaction with ligands and causes a certain type of muscular dystrophy commonly referred to as dystroglycanopathy. It has been reported that a unique O-mannosyl tetrasaccharide (Neu5Ac-α2,3-Gal-β1,4-GlcNAc-β1,2-Man) and a phosphodiester-linked modification on O-mannose play important roles in the laminin binding activity of α-DG. In this study, we use several dystroglycanopathy mouse models to demonstrate that, in addition to fukutin and LARGE, FKRP (fukutin-related protein) is also involved in the post-phosphoryl modification of O-mannose on α-DG. Furthermore, we have found that the glycosylation status of α-DG in lung and testis is minimally affected by defects in fukutin, LARGE, or FKRP. α-DG prepared from wild-type lung- or testis-derived cells lacks the post-phosphoryl moiety and shows little laminin-binding activity. These results show that FKRP is involved in post-phosphoryl modification rather than in O-mannosyl tetrasaccharide synthesis. Our data also demonstrate that post-phosphoryl modification not only plays critical roles in the pathogenesis of dystroglycanopathy but also is a key determinant of α-DG functional expression as a laminin receptor in normal tissues and cells.  相似文献   

19.
Inflammatory infiltration of tumor stroma is an integral reflection of reactions that develop in response to any damage to tumor cells including immune responses to antigens or necrosis caused by vascular disorders. In this review, we use the term “immune-inflammatory response” (IIR) that allows us to give an integral assessment of the cellular composition of the tumor microenvironment. Two main types of IIRs are discussed: type 1 and 2 T-helper reactions (Th1 and Th2), as well as their inducers: immunosuppressive responses and reactions mediated by Th22 and Th17 lymphocytes and capable of modifying the main types of IIRs. Cellular and molecular manifestations of each IIR type are analyzed and their general characteristics and roles in tissue regeneration and tumor growth are presented. Since inflammatory responses in a tumor can also be initiated by innate immunity mechanisms, special attention is given to inflammation based on them. We emphasize that processes accompanying tissue regeneration are prototypes of processes underlying cancer progression, and these processes have the same cellular and molecular substrates. We focus on evidence that tumor progression is mainly contributed by processes specific for the second phase of “wound healing” that are based on the Th2-type IIR. We emphasize that the effect of various types of immune and stroma cells on tumor progression is determined by the ability of the cells and their cytokines to promote or prevent the development of Th1- or Th2-type of IIR. Finally, we supposed that the nonspecific influence on the tumor caused by the cytokine context of the Th1- or Th2-type microenvironment should play a decisive role for suppression or stimulation of tumor growth and metastasis.  相似文献   

20.
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson's disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein-membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonuniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号