首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

We conducted molecular characterization of Nicaraguan Pinus tecunumanii populations using microsatellite markers. Populations possess considerable genetic variation but there are risks associated with inbreeding and population fragmentation.

Abstract

We carried out a molecular characterization of three natural populations of Pinus tecunumanii using nine microsatellite markers. All studied populations occur in Nicaragua, where the species has declined primarily due to human-influenced factors. The results showed that there is a high amount of genetic variation in populations (expected heterozygosities 0.775–0.841), populations do not show significant differentiation (mean F ST 0.0073), apparently due to frequent gene flow or a more continuous distribution and homogenous genetic composition in the past, and inbreeding is common in all populations (F IS 0.705–0.780). The Structure analysis revealed that there is no evident clustering pattern among P. tecunumanii individuals. Although all studied populations possess a considerable amount of genetic variation, risks associated with inbreeding and population fragmentation should be acknowledged and a conservation strategy developed to safeguard the genetic resources of P. tecunumanii.  相似文献   

2.

Background

The major impact of Plio-Pleistocene climatic oscillations on the current genetic structure of many species is widely recognised but their importance in driving speciation remains a matter of controversies. In addition, since most studies focused on Europe and North America, the influence of many other biogeographic barriers such as the Sahara remains poorly understood. In this paper, climate-driven diversification was investigated by using a comparative phylogeographic approach in combination with phenotypic data in two avian species groups distributed on both sides of the deserts belt of Africa and Asia. In particular, we tested whether: 1) vicariance diversification events are concomitant with past climatic events; and 2) current ecological factors (using climate and competition as proxies) contribute to phenotypic divergence between allopatric populations.

Results

Mitochondrial and nuclear sequence data indicated that the crested and Thekla lark species groups diverged in the early Pliocene and that subsequent speciation events were congruent with major late Pliocene and Pleistocene climatic events. In particular, steep increase in aridity in Africa near 2.8 and 1.7 million years ago were coincident with two north-south vicariance speciation events mediated by the Sahara. Subsequent glacial cycles of the last million years seem to have shaped patterns of genetic variation within the two widespread species (G. cristata and G. theklae). The Sahara appears to have allowed dispersal from the tropical areas during climatic optima but to have isolated populations north and south of it during more arid phases. Phenotypic variation did not correlate with the history of populations, but was strongly influenced by current ecological conditions. In particular, our results suggested that (i) desert-adapted plumage evolved at least three times and (ii) variation in body size was mainly driven by interspecific competition, but the response to competition was stronger in more arid areas.

Conclusion

Climatic fluctuations of the Plio-Pleistocene strongly impacted diversification patterns in the Galerida larks. Firstly, we found that cladogenesis coincides with major climatic changes, and the Sahara appears to have played a key role in driving speciation events. Secondly, we found that morphology and plumage were strongly determined by ecological factors (interspecific competition, climate) following vicariance.  相似文献   

3.

Background

Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.

Results

Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.

Conclusion

The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.  相似文献   

4.

Background and aims

Pseudometallophytes are model organisms for adaptation and population differentiation because they persist in contrasting edaphic conditions of metalliferous and non-metalliferous habitats. We examine patterns of genetic divergence and local adaptation of Biscutella laevigata to assess historical and evolutionary processes shaping its genetic structure.

Methods

We sampled all known populations of B. laevigata in Poland and analyzed respective soil metal concentrations. For genotyping we used nine nuclear microsatellite loci. Population genetic pools were identified (Bayesian clustering) and we estimated genetic parameters and demographic divergence between metallicolous and non-metallicolous populations (ABC-approach).

Results

Populations clustered into two groups which corresponded to their edaphic origin and diverged 1,200 generations ago. We detected a significant decrease in genetic diversity and evidence for a recent bottleneck in metallicolous populations. Genetic structure was unrelated to site distribution but is rather influenced by environmental conditions (i.e. soil metal concentration).

Conclusions

The intriguing disjunctive distribution of B. laevigata in Poland results from a fragmentation of the species range during the Holocene, rather than recent long-distance-dispersal events. The genetic structure of populations, however, continues to be modified by microevolutionary processes at anthropogenic sites. These clear divergence patterns promote B. laevigata as a model species for plant adaptation to polluted environments.  相似文献   

5.
6.

Background and aims

Jurinea pinnata is an Iberian vascular plant which only grows on gypsum and dolomite, two types of rocks associated with their exclusive endemic floras. In addition, the plant has an island-like distribution which could affect the differentiation and the genetic variability of wild populations. Thus, the species provides a unique opportunity for comparing (bio)geographical and ecological (edaphic) differentiation by means of molecular markers.

Methods

For our investigation we took 24 soil samples paired with a similar number of foliar samples for nutritional analyses. Our molecular-marker approach (AFLPs) involved 16 populations.

Results

The edaphic parameters revealed significant dissimilarities between dolomitic and gypsum soils. These differences are also found in the mineral composition of the leaves. However, molecular data revealed that the differentiation between populations correlates better with geographical isolation than with the substrate character.

Conclusions

The populations showing the greatest genetic diversity are those of the East Baetic territory where the species grow on both substrates and its populations are closer together. The plant tolerance to gypsum and dolomite can be explained either as a result of common adaptive mechanisms or of a more general adaptation to arid environments.  相似文献   

7.

Background

Tetraena mongolica (Zygophyllaceae), an endangered endemic species in western Inner Mongolia, China. For endemic species with a limited geographical range and declining populations, historical patterns of demography and hierarchical genetic structure are important for determining population structure, and also provide information for developing effective and sustainable management plans. In this study, we assess genetic variation, population structure, and phylogeography of T. mongolica from eight populations. Furthermore, we evaluate the conservation and management units to provide the information for conservation.

Results

Sequence variation and spatial apportionment of the atp B- rbc L noncoding spacer region of the chloroplast DNA were used to reconstruct the phylogeography of T. mongolica. A total of 880 bp was sequenced from eight extant populations throughout the whole range of its distribution. At the cpDNA locus, high levels of genetic differentiation among populations and low levels of genetic variation within populations were detected, indicating that most seed dispersal was restricted within populations.

Conclusions

Demographic fluctuations, which led to random losses of genetic polymorphisms from populations, due to frequent flooding of the Yellow River and human disturbance were indicated by the analysis of BEAST skyline plot. Nested clade analysis revealed that restricted gene flow with isolation by distance plus occasional long distance dispersal is the main evolutionary factor affecting the phylogeography and population structure of T. mongolica. For setting a conservation management plan, each population of T. mongolica should be recognized as a conservation unit.  相似文献   

8.

Background

Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity.

Results

Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability.

Conclusions

In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.  相似文献   

9.

Background

Fibroblast growth factor 20 (FGF20) is a neurotrophic factor preferentially expressed in the substantia nigra of rat brain and could be involved in dopaminergic neurons survival. Recently, a strong genetic association has been found between FGF20 gene and the risk of suffering from Parkinson's disease (PD). Our aim was to replicate this association in two independent populations.

Methods

Allelic, genotypic, and haplotype frequencies of four biallelic polymorphisms were assessed in 151 sporadic PD cases and 186 controls from Greece, and 144 sporadic PD patients and 135 controls from Finland.

Results

No association was found in any of the populations studied.

Conclusion

Taken together, these findings suggest that common genetic variants in FGF20 are not a risk factor for PD in, at least, some European populations.  相似文献   

10.

Background

Understanding the forces that shaped Neotropical diversity is central issue to explain tropical biodiversity and inform conservation action; yet few studies have examined large, widespread species. Lowland tapir (Tapirus terrrestris, Perissodactyla, Tapiridae) is the largest Neotropical herbivore whose ancestors arrived in South America during the Great American Biotic Interchange. A Pleistocene diversification is inferred for the genus Tapirus from the fossil record, but only two species survived the Pleistocene megafauna extinction. Here, we investigate the history of lowland tapir as revealed by variation at the mitochondrial gene Cytochrome b, compare it to the fossil data, and explore mechanisms that could have shaped the observed structure of current populations.

Results

Separate methodological approaches found mutually exclusive divergence times for lowland tapir, either in the late or in the early Pleistocene, although a late Pleistocene divergence is more in tune with the fossil record. Bayesian analysis favored mountain tapir (T. pinchaque) paraphyly in relation to lowland tapir over reciprocal monophyly, corroborating the inferences from the fossil data these species are sister taxa. A coalescent-based analysis rejected a null hypothesis of allopatric divergence, suggesting a complex history. Based on the geographic distribution of haplotypes we propose (i) a central role for western Amazonia in tapir diversification, with a key role of the ecological gradient along the transition between Andean subcloud forests and Amazon lowland forest, and (ii) that the Amazon river acted as an barrier to gene flow. Finally, the branching patterns and estimates based on nucleotide diversity indicate a population expansion after the Last Glacial Maximum.

Conclusions

This study is the first examining lowland tapir phylogeography. Climatic events at the end of the Pleistocene, parapatric speciation, divergence along the Andean foothill, and role of the Amazon river, have similarly shaped the history of other taxa. Nevertheless further work with additional samples and loci is needed to improve our initial assessment. From a conservation perspective, we did not find a correspondence between genetic structure in lowland tapir and ecogeographic regions proposed to define conservation priorities in the Neotropics. This discrepancy sheds doubt into this scheme's ability to generate effective conservation planning for vagile species.  相似文献   

11.

Background

The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today.

Results

Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation.

Conclusions

Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity.  相似文献   

12.

Background

Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today.

Results

I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity.

Conclusions

Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction.

Reviewer names

Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti  相似文献   

13.

Background and aims

Exotic coniferous species have been used widely in restoration efforts in tropical montane forests due to their tolerance to adverse conditions and rapid growth, with little consideration given to the potential ecological benefits provided by native tree species. The aim of this study was to elucidate differences in litterfall and nutrient flow between a montane oak forest (Quercus humboldtii Bonpl.) and exotic coniferous plantations of pine (Pinus patula Schltdl. & Cham.) and cypress (Cupressus lusitanica Mill.) in the Colombian Andes.

Methods

Litter production, litter decomposition rate, and element composition of leaf litter were monitored during 3 years.

Results

Litter production in the oak forest and pine plantation was similar, but considerably lower in the cypress plantation . Similar patterns were observed for nutrient concentrations in litterfall, with the exception of Ca which was three times higher in the cypress plantation. The annual decay rate of litter was faster in the montane oak forest than in either of the exotic coniferous plantations. The potential and net return of nutrients to the forest floor were significantly higher in oak forest than in the exotic coniferous plantations.

Conclusions

Future restoration programs should consider new species that can emulate the nutrient flow of native broadleaf species instead of exotic species that tend to impoverish soil nutrient stocks in tropical montane forests.  相似文献   

14.
15.

Aims

Sediment retention by plant barriers initiates common strategies to conserve soil fertility or restore degraded terrains, including gullied ones. Differences in species performance for sediment retention have been studied but little is known about plant performance in retention when upscaling to plurispecific barriers. We investigated the role of morphological diversity of plant barriers in sediment retention in the context of eroded marly gullies.

Methods

Fifteen plant barriers, composed of combinations of four morphologically contrasting species (grass, shrub, dwarf-shrub and juvenile tree) were tested for their sediment retention potential in an innovative life-size artificial concentrated runoff experiment. We studied the net effect of biodiversity and the role of morphological traits on sediment retention.

Results

We found that grass barriers performed best to retain sediment and morphological diversity significantly impaired sediment retention. This negative effect may be due to runoff concentrating in the least flow-resistant areas (shrubs or trees), resulting in a localized increase in flow velocity and thus an overall decrease in sediment deposition.

Conclusion

To initiate gully restoration by increasing sediment retention in their bed, morphologically homogeneous plant barriers should be favored. Plant diversity, useful for mid- and long-term restoration goals, should be considered later in the process.  相似文献   

16.

Background

Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues.

Results

Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places.

Conclusions

This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which are valuable for tea breeding.  相似文献   

17.

Background

The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries.

Methodology and Principal Findings

Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity.

Conclusions and Significance

DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.  相似文献   

18.

Background

The Salangid icefish Neosalanx taihuensis (Salangidae) is an economically important fish, which is endemic to China, restricted to large freshwater systems (e.g. lakes, large rivers and estuaries) and typically exhibit low vagility. The continuous distribution ranges from the temperate region of the Huai and Yellow River basins to the subtropical region of the Pearl River basin. This wide ranging distribution makes the species an ideal model for the study of palaeoclimatic effects on population genetic structure and phylogeography. Here, we aim to analyze population genetic differentiation within and between river basins and demographic history in order to understand how this species responded to severe climatic oscillations, decline of the sea levels during the Pleistocene ice ages and tectonic activity.

Results

We obtained the complete mtDNA cytochrome b sequences (1141 bp) of 354 individuals from 13 populations in the Pearl River, the Yangze River and the Huai River basin. Thirty-six haplotypes were detected. Haplotype frequency distributions were strongly skewed, with most haplotypes (n = 24) represented only in single samples each and thus restricted to a single population. The most common haplotype (H36) was found in 49.15% of all individuals. Analysis of molecular variance (AMOVA) revealed a random pattern in the distribution of genetic diversity, which is inconsistent with contemporary hydrological structure. Significant levels of genetic subdivision were detected among populations within basins rather than between the three basins. Demographic analysis revealed that the population size in the Pearl River basin has remained relatively constant whereas the populations in the Yangze River and the Huai River basins expanded about 221 and 190 kyr ago, respectively, with the majority of mutations occurring after the last glacial maximum (LGM).

Conclusion

The observed complex genetic pattern of N. taihuensis is coherent with a scenario of multiple unrelated founding events by long-distance colonization and dispersal combined with contiguous population expansion and locally restricted gene flow. We also found that this species was likely severely impacted by past glaciations. More favourable climate and the formation of large suitable habitations together facilitated population expansion after the late Quaternary (especially the LGM). We proposed that all populations should be managed and conserved separately, especially for habitat protection.  相似文献   

19.

Key message

The Neotropical tree Parkia panurensis shows a spatial genetic structure from the seed to the adult stage that is most likely the outcome of the seed dispersal provided by primates.

Abstract

Seed dispersal and pollination determine the gene flow within plant populations. In addition, seed dispersal creates the template for subsequent stages of plant recruitment. Therefore, the question arises whether and how seed dispersal affects the spatial genetic structure (SGS) of plant populations. In this study, we used microsatellites to analyse the SGS of the Neotropical tree Parkia panurensis (Fabaceae). This plant species is a major food resource for primates and its seeds are mainly dispersed by primates. Seeds were collected during behavioural observations of a tamarin mixed-species troop in north-eastern Peru. Additionally, leaf samples of juveniles and of adults trees of this species were collected throughout the home range of the tamarin troop. A significant SGS for embryos (located within the dispersed seeds) and for non-reproductive plants are found up to a distance of 300 m. This matches the distance within which most seeds are dispersed. In the adult stage, the scale of a significant SGS is reduced to 100 m. While we cannot explain this scale reduction, our study provides the first evidence that primate seed dispersal does influence the SGS of a tropical tree species.  相似文献   

20.
In the southern Andes mountains (27–\(39{^{\circ }}\hbox {S}\)) Azorella madreporica and Laretia acaulis, two Apiaceae cushion plant species commonly known as yaretas, conform a well-established altitudinal vegetation belt along the lower Andean zone. These species have been considered as fundamental components of several ecological dynamics within their communities; however, high-mountain ecosystems are increasingly threatened worldwide by natural and anthropogenic pressures and the southern Andes are not the exception. Recognizing that genetic information is crucial for the success of any conservation or restoration initiative in wild populations, we developed and cross-amplified 28 specifically designed microsatellite markers (14 in A. madreporica and 14 in L. acaulis), and also tested the cross amplification of 25 markers from the related species Azorella selago. In a region which is particularly vulnerable to global change trends, this new polymorphic microsatellite loci will be useful in the study of the genetic diversity of these high-mountain cushion plants, which are pivotal in the structuring of their native ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号