首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi S  Qiu Y  Li E  Wu L  Fu C 《Biochemical genetics》2006,44(5-6):198-208
To examine interspecific relationships and test the hypothesis of hybrid origin within Lycoris species, this study used data from parsimony analyses with nuclear ITS sequences for 19 taxa representing 14 species of Lycoris and two outgroup taxa. The ITS sequences resolved three infrageneric clades. One clade included L. chinensis, L. longituba, L. longituba var. flava, L. anhuiensis, and L. aurea; the second one consisted of L. sprengeri, L. radiata, L. radiata var. radiata, L. radiata var. pumila, L. haywardii, L. rosea, L. sanguinea var. sanguinea, and L. sanguinea var. koreana; and the third included L. caldwellii, L. straminea, L. albiflora, L. flavescens, and two hybrids. The results strongly support the hypothesis that L. straminea originated from hybridization between L. chinensis and L. radiata var. pumila, and the allotriploid L. caldwellii and L. albiflora derived from hybridization between L. chinensis and L. sprengeri. As nucleotide additivity was observed in the artificial hybrids and several presumed hybrids, the likelihood of hybrid origin of Lycoris species is supported.These authors contributed equally to this work.  相似文献   

2.
Water deficit is one of the major limiting factors in vegetation recovery and restoration in loess, hilly-gully regions of China. The light responses of photosynthesis in leaves of two-year old Prunus sibirica L., Hippophae rhamnoides L., and Pinus tabulaeformis Carr. under various soil water contents were studied using the CIRAS-2 portable photosynthesis system. Light-response curves and photosynthetic parameters were analyzed and fitted using the rectangular hyperbola model, the exponential model, the nonrectangular hyperbola model, and the modified rectangular hyperbola model. Under high light, photosynthetic rate (P N) and stomatal conductance (g s) were steady and photoinhibition was not significant, when the relative soil water content (RWC) varied from 56.3–80.9%, 47.9–82.9%, and 33.4–92.6% for P. sibirica, H. rhamnoides, and P. tabulaeformis, respectively. The light-response curves of P N, the light compensation point (LCP), and the dark respiration rate (R D) were well fitted using the above four models. The nonrectangular hyperbola was the best model in fitting the data; the modified rectangular hyperbola model was the second, and the rectangular hyperbola model was the poorest one. When RWC was higher or lower than the optimal range, the obvious photoinhibition and significant decrease in P N with increasing photosynthetic photon flux density (PPFD) were observed in all three species under high light. The light saturation point (LSP) and apparent quantum yield also decreased significantly, when the upper limit of PPFD was 200 μmol m?2 s?1. Under these circumstances, only the modified rectangular hyperbola model was able to fit well the curves of the light response, LCP, LSP, R D, and light-saturated P N.  相似文献   

3.
This study examines the effect of irradiance level produced by solid-state light-emitting diodes (LEDs) on the growth, nutritional quality and antioxidant properties of Brassicaceae family microgreens. Kohlrabi (Brassica oleracea var. gongylodes, ‘Delicacy Purple’) mustard (Brassica juncea L., ‘Red Lion’), red pak choi (Brassica rapa var. chinensis, ‘Rubi F1’) and tatsoi (Brassica rapa var. rosularis) were grown using peat substrate in controlled-environment chambers until harvest time (10 days, 21/17°C, 16 h). A system of five lighting modules with 455, 638, 665 and 731 nm LEDs at a total photosynthetic photon flux densities (PPFD) of 545, 440, 330, 220 and 110 µmol m?2s?1 respectively were used. Insufficient levels of photosynthetically active photon flux (110 µmol m?2 s?1) suppressed normal growth and diminished the nutritional value of the Brassica microgreens studied. In general, the most suitable conditions for growth and nutritional quality of the microgreens was 330–440 µmol m?2 s?1 irradiation, which resulted in a larger leaf surface area, lower content of nitrates and higher total anthocyanins, total phenols and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. High light levels (545 µmol m?2 s?1), which was expected to induce mild photostress, had no significant positive impact for most of investigated parameters.  相似文献   

4.
Leaf respiration (R L) of evergreen species co-occurring in the Mediterranean maquis developing along the Latium coast was analyzed. The results on the whole showed that the considered evergreen species had the same R L trend during the year, with the lowest rates [0.83 ± 0.43 μmol(CO2) m?2 s?1, mean value of the considered species] in winter, in response to low air temperatures. Higher R L were reached in spring [2.44 ± 1.00 μmol(CO2) m?2 s?1, mean value] during the favorable period, and in summer [3.17 ± 0.89 μmol(CO2) m?2 s?1] during drought. The results of the regression analysis showed that 42% of R L variations depended on mean air temperature and 13% on total monthly rainfall. Among the considered species, C. incanus, was characterized by the highest R L in drought [4.93 ± 0.27 μmol(CO2) m?2 s?1], low leaf water potential at predawn (Ψpd= ?1.08 ± 0.18 MPa) and midday (Ψmd = ?2.75 ± 0.11 MPa) and low relative water content at predawn (RWCpd = 80.5 ± 3.4%) and midday (RWCmd = 67.1 ± 4.6%). Compared to C. incanus, the sclerophyllous species (Q. ilex, P. latifolia, P. lentiscus, A. unedo) and the liana (S. aspera), had lower R L [2.72 ± 0.66 μmol(CO2) m?2 s?1, mean value of the considered species], higher RWCpd (91.8 ± 1.8%), RWCmd (82.4 ± 3.2%), Ψpd (?0.65 ± 0.28 MPa) and Ψmd (?2.85 ± 1.20 MPa) in drought. The narrow-leaved species (E. multiflora, R. officinalis, and E. arborea) were in the middle. The coefficients, proportional to the respiration increase for each 10°C rise (Q10), ranging from 1.49 (E. arborea) to 1.98 (A. unedo) were indicative of the different sensitivities of the considered species to air temperature variation.  相似文献   

5.
Genetically modified potato (Solanum tuberosum L. cv. Desiree) and tobacco (Nicotiana tabacum cv. Samsun N.N.) plants were used to analyze the effects exerted by the chloroplastic (cp) fructose- 1,6-bisphosphatase (FBPase) on the regulation of light energy discrimination at the level of photosystem II. The cp-FBPase activity was progressively inhibited by an mRNA antisense to this FBPase. The chlorophyll fluorescence quenching parameters of these transgenic plants were compared to those of wild-type and transgenic plants that were acclimated to low temperatures. In particular various lines of the transgenic potato and tobacco plants were exposed to a temperature treatment of 10 and 20°C for 10 days. Light intensities were kept low to reduce photoinhibition so that we could analyze exclusively the effects of a modification in the carbon fixation cycle on the chlorophyll fluorescence quenching parameters. The photon flux densities (PFDs) employed at the level of the middle leaves of all plants were set to two different values of 10 μmol m?2 s?1 and 50 μmol m?2 s?1. Subsequent to this 10-day acclimation the chlorophyll-fluorescence parameters of all plants were measured. Photoinhibition as expressed by the Fy/Fm ratio was minor in plants subjected to a PFD of 10 μmol m?2 s?1. Higher photon fluence rates of 50 μmol m?2 s?1 at temperatures of 10°C gave rise to a significant reduction in the Fy/Fm ratios obtained from the transgenic plants which were characterized by a restriction in cp-FBPase capacity to 20% of normal activity. Furthermore, a progressive inhibition of the cp-FBPase activity induced an amplified nonphotochemical quenching of chlorophyll fluorescence with in the genetically manipulated species (except at 10°C and 50 μmol m?2 s?1). The increase in nonphotochemical quenching depended upon light and temperature. Photochemical quenching of light quanta within the antisense plants declined relative to that in the wild type. To further characterize the mechanisms producing higher levels of nonphotochemical fluorescence quenching. we analyzed several of the xanthophyll cycle pigments. The deepoxidation state of the xanthophyll cycle pigments in potato plants increased with attenuating FBPase activities under all conditions. For tobacco plants, this elevation of the deepoxidation state was only observed at a PFD of 50 μmol m?2 s?1.  相似文献   

6.
The compensation point for growth of Phaeodactylum tricornutum Bohlin is less than 1 μmol. m?2s?1. Growth at low PFDs (<3.5 μmol. m?2.s?1) does not appear to reduce the maximum quantum efficiency of photosynthesis (øm) or to greatly inhibit the potential for light-saturated, carbon-specific photosynthesis (Pmc). The value for øm in P. tricornutum is 0.10–0.12 mol O2-mol photon?1, independent of acclimation PFD between 0.75 and 200 μmol.m?2.s?1 in nutrient-sufficient cultures. Pmc in cells of P. tricornutum acclimated to PFDs <3.5 μmol m?2?s?1 is approximately 50% of the highest value obtained in nutrient-sufficient cultures acclimated to growth-rate-saturating PFDs. In addition, growth at low PFDs does not severely restrict the ability of cells to respond to an increase in light level. Cultures acclimated to growth at lees than 1% of the light-saturated growth rate respond rapidly to a shift-up in PFD after a short initial lag period and achieve exponential growth rates of 1.0 d?1 (65% of the light- and nutrient-saturated maximum growth rate) at both 40 and 200 μmol.m?2.s?1  相似文献   

7.
Lemna gibba L. was cultivated in continuous light (800–1200 μmol quanta m?2s?1, 320–400 W m?2) and normal or CO2-enriched air (1500 μl CO2 l?1), with a continuous nutrient supply. Increased CO2 concentration increased the unit leaf rate (ULR) or net assimilation rate and decreased the leaf area ratio (LAR) (photosynthetic area per unit dry weight), but the relative growth rate was unchanged (0.43 g g?1 day?1). The changes in ULR and LAR indicate that organic matter production can be increased with CO2 enrichment at high photon flux rate (PFR).  相似文献   

8.
Photosynthesis of marine benthic diatom mats was examined before and after sea ice breakout at a coastal site in eastern Antarctica (Casey). Before ice breakout the maximum under‐ice irradiance was between 2.5 and 8.2 μmol photons·m?2·s?1 and the benthic microalgal community was characterized by low Ek (12.1–32.3 μmol photons·m?2·s?1), low relETRmax (9.2–32.9), and high alpha (0.69–1.1). After breakout, 20 days later, the maximum irradiance had increased to between 293 and 840 μmol photons·m?2·s?1, Ek had increased by more than an order of magnitude (to 301–395 μmol photons·m?2·s?1), relETRmax had increased by more than five times (to 104–251), and alpha decreased by approximately 50% (to 0.42–0.68). During the same time interval the species composition of the mats changed, with a decline in the abundance of Trachyneis aspera (Karsten) Hustedt, Gyrosigma subsalsum Van Heurck, and Thalassiosira gracilis (Karsten) Hustedt and an increase in the abundance of Navicula glaciei Van Heurck. The benthic microalgal mats at Casey showed that species composition and photophysiology changed in response to the sudden natural increase in irradiance. This occurred through both succession shifts in the species composition of the mats and also an ability of individual cells to photoacclimate to the higher irradiances.  相似文献   

9.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 μmol(CO2) m?2s?1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 μmol(CO2) m?2s?1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 μmol(CO2) m?2s?1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.  相似文献   

10.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

11.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

12.
Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m?2 s? was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m?2 s?1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m?2 s?1, respectively. Convexity (Θ), a measure of the extent of co-limitation between PS II turnover and whole-chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m?2 s?1, whereas Pmax increased above the control. Treatment at 2200 μMmol m?2 s?1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m?2 s?1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB-reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m?2 s?1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m?2 s?1.  相似文献   

13.
The net photosynthetic rate (F), transpiration rate (Q) and water use efficiency (F/Q) of oilseed rape (Brassica campestris L. cv. Span) was studied under a range of atmospheric conditions by gas exchange techniques. The plants were at the full bloom/pod initiation stage of development at the time of measurement. The environmental conditions consisted of various levels of photosynthetically active radiation (100 to 2800 (μmol m?2 s?1 PAK: 400–700 nm), air temperature (10 to 42°C) and vapour pressure deficit (0.7 to 2.1 kPa VPD). The peak values ofF were recorded at 1600 μmol m?2 s?1 PAR, 20°C air temperature and 1.2 kPa VPD of air in the chamber. Q increased with increasing PAR, air temperature and VPD. However, theF/Q remained high and almost constant from 600 to 1600 μmol m?2 s?1 PAR, but declined at the low and high photon flux densities.F/Q decreased progressively with increase in air temperature and VPD of air in the chamber.  相似文献   

14.
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (P G), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and P G. NPQ with all treatments increased rapidly within the first 1–2 min of the light induction. Thereafter, only species with high P G and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6–8 min under PPFD of 100 μmol(photon) m?2 s?1 and ambient CO2 concentration. Leaves with low P Gand ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m?2 s?1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies.  相似文献   

15.
To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ?40 μmol m?2 s?1, which is more than twice the rate found in the dry season (?15 μmol m?2 s?1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 μmol m?2 s?1 being observed at the maximum incoming photon flux densities of 2200 μmol m?2 s?1. This contrasted strongly to the dry period when light saturation occurred with 1500 μmol m?2 s?1 and with maximum canopy photosynthetic rates of only 20 μmol m?2 s?1. Both canopy photosynthetic rates and night‐time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well‐managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone.  相似文献   

16.
Gracilaria edulis and Gracilaria tenuistipitata var liui are agarophytes with high commercial value which are currently cultivated in countries like India and Thailand. They have great potential for mariculture in Malaysia. Experiments were carried out to study carpospore germination and determine the effects of irradiance and salinity on the growth of these two species. Both species showed the Dumontia type of carpospore development. Both species showed increased daily growth rate (% day?1) with increasing irradiance and tolerance for a wide range of salinity with a preference for low salinity. G. edulis grew best at 100 μmol photons m?2 s?1 and 15 psu while G. tenuistipitata var liui grew best at 60–130 μmol photons m?2 s?1 and 15 psu. The highest growth rate obtained for G. edulis and G. tenuistipitata var liui was 13.57 and 19.7 % day?1 respectively. tenuistipitata var liui. ANOVA showed that both irradiance and salinity have significant effect on the growth of both species (P?<?0.05). The results showed that G. tenuistipitata var liui is a good candidate for mass cultivation in Malaysian brackish waters. Besides, this study also showed the feasibility of using spore culture to provide stocks for sustainable farming of Gracilaria.  相似文献   

17.
Abstract In normal air, illumination with a low level of blue or red light (40 μmol m?2 s?1) did not induce stomatal opening in maize plantlets. In CO2-free air, 40 μmol m?2 s?1 of blue or red light promoted an enhancement in stomatal opening. At the same quantum flux, blue light was more efficient than red light and stomatal closure occurred more rapidly with a significantly shorter lag phase after blue light. Anoxia inhibited light-dependent stomatal opening, even under 320 μmol m?2 s?1 illumination. However, after 60 min of illumination with 40 μmol m?2 s?1 of blue light in anoxia, transient stomatal opening was observed when the plant was returned to darkness and normal air. This transient stomatal opening was weaker after pretreatment with red light. We conclude that a blue-light-dependent process induced under anoxia leads to stomatal opening provided oxygen is present. Possible mechanisms associated with blue-light-effect and the nature of the oxygen-consuming processes are discussed.  相似文献   

18.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

19.
We compared the effect of CO2 concentration ([CO2], ranging from ∼5 to ∼34 μmol l−1) at four different photon flux densities (PFD=15, 30, 80 and 150 μmol m−2 s−1) and two light/dark (L/D) cycles (16/8 and 24/0 h) on the coccolithophore Emiliania huxleyi. With increasing [CO2], a decrease in the particulate inorganic carbon to particulate organic carbon (PIC/POC) ratio was observed at all light intensities and L/D cycles tested. The individual response in cellular PIC and POC to [CO2] depended strongly on the PFD. POC production increased with rising [CO2], irrespective of the light intensity, and PIC production decreased with increasing [CO2] at a PFD of 150 μmol m−2 s−1, whereas below this light level it was unaffected by [CO2]. Cell growth rate decreased with decreasing PFD, but was largely independent of ambient [CO2]. The diurnal variation in PIC and POC content, monitored over a 38-h period (16/8 h L/D, PFD=150 μmol m−2 s−1), exceeded the difference in carbon content between cells grown at high (∼29 μmol l−1) and low (∼4 μmol l−1) [CO2]. However, consistent with the results described above, cellular POC content was higher and PIC content lower at high [CO2], compared to the values at low [CO2], and the offset was observed throughout the day. It is suggested that the observed sensitivity of POC production for ambient [CO2] may be of importance in regulating species-specific primary production and species composition.  相似文献   

20.
Chronic photoinhibition in seedlings of tropical trees   总被引:1,自引:0,他引:1  
Seedlings of five canopy species of tropical trees from Costa Rica and Puerto Rico were grown in full shade (midday range of photosynthetic photon flux density [PPFD], 100–140 μmol m?2 s?1), partial shade (midday PPFD, 400–600 μmol m?2 s?1) and full sun (midday PPFD, 1 500–1 800 μmol m?2 s?1) for 3 months. The species were Ochroma lagopus (Bombacaceae), a pioneer species; Inga edulis (Fabaceae), found in secondary forest; and Dipteryx panamensis (Fabaceae), Hampea appendiculata (Malvaceae), and Manilkara bidentata (Sapotaceae), three species characteristic of primary forest. After the plants were placed in the dark overnight, chlorophyll fluorescence characteristics were measured for recently expanded and mature leaves. The ratio of variable fluorescence to maximum fluorescence (Fv/Fm) was used to estimate the degree of chronic photoinhibition. Only individuals of one species, Dipteryx panamensis, showed significant depression of Fv/Fm after long-term exposure to full sun. The depression was highly correlated with quantum yield of O2 evolution which also declined after exposure to full sun. The decline may have been related to foliar N concentration. Although all plants were supplied with ample nutrients, foliar N did not increase significantly for Dipteryx seedlings in full sun, whereas it did for Ochroma and Inga. Leaf age affected Fv/Fm only in the cases of Manilkara, where it was slightly lower in recently expanded leaves, and of Dipteryx where it interacted with the effects of light regime. We conclude that chronic photoinhibition is not common in seedlings of canopy trees of tropical rain forests except when availability of mineral nutrients may be limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号