首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Ras GTPase-activating protein p120GAP is a multidomain protein consisting of a variety of noncatalytic domains that may be involved in its regulation. RACK1 is a membrane-associated protein that binds the C2 domain of PKC and is related in sequence to the beta subunit of heterotrimeric G-proteins which has been implicated in binding to PH domains. Because p120GAP contains both PH and C2/CaLB domains we determined whether it is also a RACK1 binding protein. Coimmunoprecipitation experiments indicate that p120GAP associates with RACK1, whereas PH or C2/CaLB domain deletion mutants do not. A fusion protein containing the GAP PH domain bound to endogenous RACK1 in lysates in a concentration-dependent manner and directly associated with recombinant RACK1. Finally, serine/threonine phosphorylation appears to be involved in regulating this association. These results suggest that p120GAP and RACK1 interact in vivo in a manner dependent upon both the PH and C2/CaLB domains of GAP.  相似文献   

3.
PTPmu, an Ig superfamily receptor protein-tyrosine phosphatase, promotes cell-cell adhesion and interacts with the cadherin-catenin complex. The signaling pathway downstream of PTPmu is unknown; therefore, we used a yeast two-hybrid screen to identify additional PTPmu interacting proteins. The membrane-proximal catalytic domain of PTPmu was used as bait. Sequencing of two positive clones identified the scaffolding protein RACK1 (receptor for activated protein C kinase) as a PTPmu interacting protein. We demonstrate that RACK1 interacts with PTPmu when co-expressed in a recombinant baculovirus expression system. RACK1 is known to bind to the src protein-tyrosine kinase. This study demonstrates that PTPmu association with RACK1 is disrupted by the presence of constituitively active src. RACK1 is thought to be a scaffolding protein that recruits proteins to the plasma membrane via an unknown mechanism. We have shown that the association of endogenous PTPmu and RACK1 in a lung cell line is increased at high cell density. We also demonstrate that the recruitment of RACK1 to both the plasma membrane and cell-cell contact sites is dependent upon the presence of the PTP mu protein in these cells. Therefore, PTPmu may be one of the proteins that recruits RACK1 to points of cell-cell contact, which may be important for PTPmu-dependent signaling in response to cell-cell adhesion.  相似文献   

4.
5.
《Cellular signalling》2014,26(1):9-18
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1–AGAP2 interaction biochemically, we show RACK1–AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.  相似文献   

6.
HP1: a functionally multifaceted protein   总被引:5,自引:0,他引:5  
HP1 (heterochromatin protein 1) is a nonhistone chromosomal protein first discovered in Drosophila melanogaster because of its association with heterochromatin. Numerous studies have shown that such a protein plays a role in heterochromatin formation and gene silencing in many organisms, including fungi and animals. Cytogenetic and molecular studies, performed in Drosophila and other organisms, have revealed that HP1 associates with heterochromatin, telomeres and multiple euchromatic sites. There is increasing evidence that the different locations of HP1 are related to multiple different functions. In fact, recent work has shown that HP1 has a role not only in heterochromatin formation and gene silencing, but also in telomere stability and in positive regulation of gene expression.  相似文献   

7.
Many gram-negative bacteria use type III secretion systems to translocate effector proteins into host cells. These effectors interfere with cellular functions in a highly regulated manner resulting in effects that are beneficial for the bacteria. The pathogen Yersinia can resist phagocytosis by eukaryotic cells by translocating Yop effectors into the target cell cytoplasm. This is called antiphagocytosis, and constitutes an important virulence feature of this pathogen since it allows survival in immune cell rich lymphoid organs. We show here that the virulence protein YopK has a role in orchestrating effector translocation necessary for productive antiphagocytosis. We present data showing that YopK influences Yop effector translocation by modulating the ratio of the pore-forming proteins YopB and YopD in the target cell membrane. Further, we show that YopK that can interact with the translocators, is exposed inside target cells and binds to the eukaryotic signaling protein RACK1. This protein is engaged upon Y. pseudotuberculosis-mediated β1-integrin activation and localizes to phagocytic cups. Cells with downregulated RACK1 levels are protected from antiphagocytosis. This resistance is not due to altered levels of translocated antiphagocytic effectors, and cells with reduced levels of RACK1 are still sensitive to the later occurring cytotoxic effect caused by the Yop effectors. Further, a yopK mutant unable to bind RACK1 shows an avirulent phenotype during mouse infection, suggesting that RACK1 targeting by YopK is a requirement for virulence. Together, our data imply that the local event of Yersinia-mediated antiphagocytosis involves a step where YopK, by binding RACK1, ensures an immediate specific spatial delivery of antiphagocytic effectors leading to productive inhibition of phagocytosis.  相似文献   

8.
The cDNA encoding porcine RACK1 protein was isolated from porcine spleen cDNA library. The deduced protein sequence of porcine RACK1 cDNA shows that it contains 317 amino acid residues, and shares nearly 100% identity with its vertebrate counterparts. Noticeably, the RACK1 protein was differentially expressed in various porcine tissues. High expression of RACK1 protein was observed in the tissues including thymus, pituitary, spleen and liver, whereas there was no detectable expression in muscle. The genomic DNA of porcine RACK1 with approximate 7.5 kb was constructed by both polymerase chain reaction amplification and genomic library screening. It consists of eight exons intervened by seven introns, and most of the intron/exon splice sites conform to the GT/AG rule. The promoter region contains functional serum response element, YY1-like binding site and AP1 site, which is supported by the finding that the expression of RACK1 gene in cultured porcine ST cells has a serum response as well as a TPA response.  相似文献   

9.
The large conductance calcium-activated potassium channel, or BKCa channel, plays an important feedback role in a variety of physiological processes, including neurotransmitter release and smooth muscle contraction. Some reports have suggested that this channel forms a stable complex with regulators of its function, including several kinases and phosphatases. To further define such signaling complexes, we used the yeast two-hybrid system to screen a human aorta cDNA library for proteins that bind to the BKCa channel's intracellular, COOH-terminal "tail". One of the interactors we identified is the protein receptor for activated C kinase 1 (RACK1). RACK1 is a member of the WD40 protein family, which also includes the G protein -subunits. Consistent with an important role in BKCa-channel regulation, RACK1 has been shown to be a scaffolding protein that interacts with a wide variety of signaling molecules, including cSRC and PKC. We have confirmed the interaction between RACK1 and the BKCa channel biochemically with GST pull-down and coimmunoprecipitation experiments. We have observed some co-localization of RACK1 with the BKCa channel in vascular smooth muscle cells with immunocytochemical experiments, and we have found that RACK1 has effects on the BKCa channel's biophysical properties. Thus RACK1 binds to the BKCa channel and it may form part of a BKCa-channel regulatory complex in vascular smooth muscle. calcium-activated potassium channel; protein kinase C; smooth muscle  相似文献   

10.
11.
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His6) and purified. The protein is an α-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His6 is structurally a dimer of dimers. Incubation at temperatures above 37 °C correlated with a reduction of its α-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 °C. Refolding of gp11-His6 thermally denatured at 65 °C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (∼ 90%) and a smaller fraction of 2.4 S dimers (∼ 10%). This population of gp11-His6 was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His6 showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His6.  相似文献   

12.
This paper considers two recent arguments that structure should not be regarded as the fundamental individuating property of proteins. By clarifying both what it might mean for certain properties to play a fundamental role in a classification scheme and the extent to which structure plays such a role in protein classification, I argue that both arguments are unsound. Because of its robustness, its importance in laboratory practice, and its explanatory centrality, primary structure should be regarded as the fundamental distinguishing characteristic of protein taxonomy.  相似文献   

13.
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.  相似文献   

14.
Caveolins are scaffolding proteins able to collect on caveolae a large number of signalling proteins bearing a caveolin-binding motif. The proteins of the striatin family, striatin, SG2NA, and zinedin, are composed of several conserved, collinearly aligned, protein-protein association domains, among which a putative caveolin-binding domain [Castets et al. (2000) J. Biol. Chem. 275, 19970-19977]. They are associated in part with membranes. These proteins are mainly expressed within neurons and thought to act both as scaffolds and as Ca(2+)-dependent signalling proteins [Bartoli et al. (1999) J. Neurobiol. 40, 234-243]. Here, we show that (1) rat brain striatin, SG2NA and zinedin co-immunoprecipitate with caveolin-1; (2) all are pulled down by glutathione-S-transferase (GST)-caveolin-1; (3) a fragment of recombinant striatin containing the putative caveolin-binding domain binds GST-caveolin-1. Hence, it is likely that the proteins of the striatin family are addressed to membrane microdomains by their binding to caveolin, in accordance with their putative role in membrane trafficking [Baillat et al. (2001) Mol. Biol. Cell 12, 663-673].  相似文献   

15.
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.  相似文献   

16.
Point mutations in the cytoplasmic domain of myelin protein zero (P0; the major myelin protein in the peripheral nervous system) that alter a protein kinase Calpha (PKCalpha) substrate motif (198HRSTK201) or alter serines 199 and/or 204 eliminate P0-mediated adhesion. Mutation in the PKCalpha substrate motif (R198S) also causes a form of inherited peripheral neuropathy (Charcot Marie Tooth disease [CMT] 1B), indicating that PKCalpha-mediated phosphorylation of P0 is important for myelination. We have now identified a 65-kD adaptor protein that links P0 with the receptor for activated C kinase 1 (RACK1). The interaction of p65 with P0 maps to residues 179-197 within the cytoplasmic tail of P0. Mutations or deletions that abolish p65 binding reduce P0 phosphorylation and adhesion, which can be rescued by the substitution of serines 199 and 204 with glutamic acid. A mutation in the p65-binding sequence G184R occurs in two families with CMT, and mutation of this residue results in the loss of both p65 binding and adhesion function.  相似文献   

17.
Structure and function of the NS1 protein of influenza A virus   总被引:3,自引:0,他引:3  
The avian influenza A virus currently prevailing in Asia causes fatal pneumonia and multipleorgan failure in birds and humans.Despite intensive research,understanding of the characteristics of influenzaA virus that determine its virulence is incomplete.NS1A protein,a non-structural protein of influenza Avirus,was reported to contribute to its pathogenicity and virulence.NS1A protein is a multifunctionalprotein that plays a significant role in resisting the host antiviral response during the influenza infection.Thisreview briefly outlines the current knowledge on the structure and function of the NS1A protein.  相似文献   

18.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells.  相似文献   

19.

Background  

The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development.  相似文献   

20.
The members of the p130Cas (Cas) family are important scaffolding proteins that orchestrate cell adhesion, migration and invasiveness downstream of integrin adhesion receptors and receptor tyrosine kinases by recruiting enzymes and structural molecules. Shep1, BCAR3/AND-34 and NSP1 define a recently identified family of SH2 domain-containing proteins that constitutively bind Cas proteins through a Cdc25-type nucleotide exchange factor-like domain. To gain insight into the functional interplay between Shep1 and Cas in vivo, we have inactivated the Shep1 gene in the mouse through Cre-mediated deletion of the exon encoding the SH2 domain. Analysis of Cas tyrosine phosphorylation in the brains of newborn mice, where Shep1 is highly expressed, revealed a strong decrease in Cas substrate domain phosphorylation in knockout compared to wild-type brains. Src family kinases bind to Cas via their SH3 and SH2 domains, which contributes to their activation, and phosphorylate multiple tyrosines in the Cas substrate domain. These tyrosine-phosphorylated motifs represent docking sites for the Crk adaptor, linking Cas to the downstream Rac1 and Rap1 GTPases to regulate cell adhesion and actin cytoskeleton organization. Accordingly, we detected lower Cas–Crk association and lower phosphorylation of the Src activation loop in Shep1 knockout brains compared to wild-type. Conversely, Shep1 transfection in COS cells increases Cas tyrosine phosphorylation. The SH2 domain is likely critical for the effects of Shep1 on Cas and Src signaling because the knockout mice express Shep1 fragments that lack the amino-terminal region including the SH2 domain, presumably due to aberrant translation from internal ATG codons. These fragments retain the ability to increase Cas levels in transfected cells, similar to full-length Shep1. However, they do not affect Cas phosphorylation on their own or in the presence of co-transfected full-length Shep1. They also do not show dominant negative effects on the activity of full-length Shep1 in vivo because the heterozygous mice, which express the fragments, have a normal life span. This is in contrast to the homozygous knockout mice, most of which die soon after birth. These data demonstrate that Shep1 plays a critical role in the in vivo regulation of Src activity and Cas downstream signaling through Crk, and suggest that the SH2 domain of Shep1 is critical for these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号