首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first weeks of vertebrate postnatal life, neural networks in the visual thalamus undergo activity-dependent refinement thought to be important for the development of functional vision. This process involves pruning of synaptic connections between retinal ganglion cells and excitatory thalamic neurons that relay signals on to visual areas of the cortex. A recent report in Neural Development shows that this does not occur in inhibitory neurons, questioning our current understanding of the development of mature neural circuits. See research article: http://www.neuraldevelopment.com/content/8/1/24  相似文献   

2.
The polarization of post-mitotic neurons is poorly understood. Preexisting spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any preestablished asymmetric cues. In Caenorhabditis elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface. There an axon forms, which is ventrally directed by UNC-6. In the absence of UNC-6, UNC-40 is equally distributed and the HSN axon travels anteriorly in response to other cues. However, we find that a single amino acid change in the UNC-40 ectodomain causes randomly oriented asymmetric UNC-40 localization and a wandering axon phenotype. With UNC-6, there is normal UNC-40 localization and axon migration. A single UNC-6 amino acid substitution enhances the mutant phenotypes, whereas UNC-6 second-site amino acid substitutions suppress the phenotypes. We propose that UNC-40 mediates multiple signals to polarize and orient asymmetry. One signal triggers the intrinsic ability of HSN to polarize and causes randomly oriented asymmetry. Concurrently, another signal biases the orientation of the asymmetry relative to the UNC-6 gradient. The UNC-40 ectodomain mutation activates the polarization signal, whereas different forms of the UNC-6 ligand produce UNC-40 conformational changes that allow or prohibit the orientation signal.A major challenge for developmental neuroscience has been to understand how axons are able to detect and follow molecular gradients of different extracellular guidance cues. Attractive guidance cues are proposed to stimulate cytoplasmic signaling pathways that promote actin polymerization (Huber et al. 2003). Thus the direction of axon outgrowth is directly linked to the extracellular gradient of the guidance cue; i.e., there is greater extension on the side of the neuron that is closest to the source of the cue. Netrins are bifunctional guidance cues that are attractive to some axons but repulsive to others. Studies have shown that the axon response to netrin is determined by the composition of netrin receptors on the cell surface and the internal state of the growth cone (Round and Stein 2007). The UNC-6 (netrin) guidance cue in Caenorhabditis elegans interacts with the UNC-40 (DCC) receptor to mediate attraction (Hedgecock et al. 1990; Ishii et al. 1992; Chan et al. 1996). The AVM and HSN neurons are useful for studying UNC-40-mediated responses to UNC-6. The cell bodies of these neurons are situated on the lateral body wall and send a single axon ventrally during larval development.In AVM and HSN, a signaling module comprising UNC-6, UNC-40, phosphoinositide 3-kinase (PI3K), Rac, and MIG-10 (lamellipodin) is thought to transmit the directional information provided by the graded distribution of extracellular guidance cues to the internal cellular machinery that promotes directed outgrowth (Adler et al. 2006; Chang et al. 2006; Quinn et al. 2006, 2008). MIG-10 appears to provide an important link because this family of proteins can interact with proteins that promote actin polymerization, and it is associated with asymmetric concentrations of f-actin and microtubules in turning growth cones (Krause et al. 2004; Quinn et al. 2008). MIG-10 is observed as asymmetrically localized to the ventral site of axon outgrowth in developing HSN neurons. This MIG-10 localization is sensitive to the source of UNC-6. Normally, the source of UNC-6 is ventral; in the absence of UNC-6, there is an equal distribution of MIG-10 along the cell surface, whereas ectopic UNC-6 expression from dorsal muscles causes dorsal MIG-10 localization (Adler et al. 2006). The UNC-40 receptor is also asymmetrically localized in HSN, and this localization is also dependent on UNC-6 (Adler et al. 2006). UNC-40 signaling activates Rac GTPase, and MIG-10 interacts specifically with the activated Rac (Quinn et al. 2008). Therefore, the asymmetric activation of Rac through UNC-40 recruits asymmetric MIG-10 localization.By activating or directing components to the surface nearest the UNC-6 source, the asymmetric distribution of UNC-6 could polarize the neuron. However, an alternative idea is suggested from studies of chemotaxing cells. This model predicts that chemoattractant signaling involves two different elements: one that activates the intrinsic ability of cells to generate asymmetry and another that biases the orientation of the asymmetry (Wedlich-Soldner and Li 2003). The polarization signal does not depend on the spatial information provided by the chemoattractant gradient, whereas the orientation signal does. The asymmetric localization of the UNC-40 and MIG-10 signaling complex is suggestive of the segregation of signaling components into separate “front” and “rear” regions during chemotactic cell migration (Weiner 2002; Mortimer et al. 2008). It is hypothesized that this segregation is accomplished through short-range positive feedback mechanisms that promote the local production or recruitment of signaling molecules. In addition, a long-range inhibition mechanism globally increases the degradation of these molecules. Together such mechanisms could strongly amplify the asymmetric distribution of molecules needed for directed movement. This model has been put forth to explain why chemotactic cells polarize and move in a random direction when encountering a uniform chemoattractant concentration. Although the chemoattractant receptors may be uniformly stimulated across the surface of the cells, randomly oriented asymmetry can be established through these mechanisms.If the AVM and HSN neurons behave similarly to chemotactic cells, then uniformly stimulating UNC-40 receptors might similarly cause nonspecific asymmetric UNC-40 localization and axon migrations in varying directions. However, this is difficult to test in vivo. Unlike exposing chemotactic cells to a uniform concentration of a chemotractant in vitro, there is no reliable way to ensure that a neuron in vivo is exposed to a uniform concentration of UNC-6. The pseudocoelomic cavity of C. elegans is fluid filled, and UNC-6 expression patterns are spatially and temporally complex (Wadsworth et al. 1996). How the distribution of UNC-6 is affected by interactions with the extracellular matrix and cell surfaces is unknown.Using a genetic approach, we have found an UNC-40 mutation that triggers randomly oriented neuronal asymmetry. On the basis of the models proposed for chemotactic cells, we suggest that there is an UNC-6/UNC-40-mediated signal that specifically induces the neuron''s intrinsic ability to polarize. The UNC-40 mutation activates this signal; however, a second signal, which normally would concurrently orient asymmetry relative to the UNC-6 gradient, is not activated. Single amino acid changes within the UNC-6 ligand can enhance or suppress the randomly oriented asymmetry phenotype caused by the UNC-40 mutation. This suggests that specific UNC-40 conformations uncouple the activation of the different signals.  相似文献   

3.
The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17. To identify proteins that interact with UNC-17/VAChT, we screened for mutations that suppress the uncoordinated phenotype of UNC-17(G347R) mutants. We identified several dominant allele-specific suppressors, including mutations in the sup-1 locus. The sup-1 gene encodes a single-pass transmembrane protein that is expressed in a subset of neurons and in body muscles. Two independent suppressor alleles of sup-1 are associated with a glycine-to-glutamic acid substitution (G84E), resulting in a negative charge in the SUP-1 TMD. A sup-1 null mutant has no obvious deficits in cholinergic neurotransmission and does not suppress unc-17 mutant phenotypes. Bimolecular fluorescence complementation (BiFC) analysis demonstrated close association of SUP-1 and UNC-17 in synapse-rich regions of the cholinergic nervous system, including the nerve ring and dorsal nerve cords. These observations suggest that UNC-17 and SUP-1 are in close proximity at synapses. We propose that electrostatic interactions between the UNC-17(G347R) and SUP-1(G84E) TMDs alter the conformation of the mutant UNC-17 protein, thereby restoring UNC-17 function; this is similar to the interaction between UNC-17/VAChT and synaptobrevin.  相似文献   

4.
5.
6.
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.  相似文献   

7.
8.
The scent of 3-mercapto-3-methylbutanol (3-M-3-MB), a volatile component of leopard (Panthera pardus) and domestic cat (Felis silvestris catus) urine, released at about 10 ng/s from slow-release dispensers, elicited scent-marking from African civet (Civettictis civetta), small-spotted genet (Genetta genetta) and slender mongoose (Galerella sanguinea), as well as African wildcat (F. s. cafra). A female leopard was apparently repelled by the scent. The scent-marking and scent-rubbing by species other than African wildcats and leopards were unexpected and have important implications for the design of studies to investigate chemical communication between wild mammals and the use of camera traps to estimate animal numbers. Videos showing the behaviours referred to in this article are available at; http://www.momo-p.com/showdetail-e.php?movieid=momo161223fs01a; http://www.momo-p.com/showdetail-e.php?movieid=momo161223gs01a; http://www.momo-p.com/showdetail-e.php?movieid=momo161223gg01a.  相似文献   

9.
10.
Ribose 5-phosphate (R5P) is a sugar known to undergo the Maillard reaction (glycation) at a rapid rate. In a reaction with the lysines of bovine heart cytochrome c, R5P generates superoxide () that subsequently reduces ferri-cytochrome c to ferro-cytochrome c. The rate equation for the observed cytochrome c reduction is first order in respect to cytochrome c and half order in respect to R5P. The addition of amines to the cytochrome c-R5P system greatly increases the generation with rates of approximately 1.0 μM min−1 being observed with millimolar levels of R5P and amine at 37 °C. Pre-incubation of R5P with the amine prior to cytochrome c addition further enhances the rate of cytochrome c reduction approximately twofold for every 30 min of incubation. While clearly accounting for a portion of the reduction of cytochrome c, is not the sole reductant of the system as the use of superoxide dismutase only partially limits cytochrome c reduction, and the contribution of proportionally decreases with longer amine-R5P incubation times. The remainder of the cytochrome c reduction is attributed to either the Amadori product or a cross-linked Schiff base created when a Maillard reaction-derived dicarbonyl compound(s) reacts with the amine. It is believed that these compounds directly transfer electrons to ferri-cytochrome c and subsequently become stable free-radical cations. ATP, a putative regulator of cytochrome c activity, does not inhibit electron transport from or the cross-linked Schiff base but does prevent R5P from reacting with surface lysines to generate superoxide. The spontaneous reaction between R5P and amines could serve as an alternative system for generating in solution.  相似文献   

11.
12.
13.
A phylloquinone molecule (2-methyl, 3-phytyl, 1, 4-naphthoquinone) occupies the A1 binding site in photosystem 1 particles from Synechocystis sp. 6803. In menB mutant photosystem 1 particles from the same species, plastoquinone-9 occupies the A1 binding site. By incubation of menB mutant photosystem 1 particles in the presence of phylloquinone, it was shown in another study that phylloquinone will displace plastoquinone-9 in the A1 binding site. We describe the reconstitution of unlabeled (16O) and 18O-labeled phylloquinone back into the A1 binding site in menB photosystem 1 particles. We then produce time-resolved Fourier transform infrared (FTIR) difference spectra for these menB photosystem 1 particles that contain unlabeled and 18O-labeled phylloquinone. By specifically labeling only the phylloquinone oxygen atoms we are able to identify bands in FTIR difference spectra that are due to the carbonyl (CO) modes of neutral and reduced phylloquinone. A positive band at 1494 cm−1 in the FTIR difference spectrum is found to downshift 14 cm−1 and decreases in intensity on 18O labeling. Vibrational mode frequency calculations predict that an antisymmetric vibration of both CO groups of the phylloquinone anion should display exactly this behavior. In addition, phylloquinone that has asymmetrically hydrogen bonded carbonyl groups is also predicted to display this behavior. The positive band at 1494 cm−1 in the FTIR difference spectrum is therefore due to the antisymmetric vibration of both CO groups of one electron reduced phylloquinone. Part of a negative band at 1654 cm−1 in the FTIR difference spectrum downshifts 28 cm−1 on 18O labeling. Again, vibrational mode frequency calculations predict this behavior for a CO mode of neutral phylloquinone. The negative band at 1654 cm−1 in the FTIR difference spectrum is therefore due to a CO mode of neutral phylloquinone. More specifically, calculations on a phylloquinone model molecule with the C4O group hydrogen bonded predict that the 1654 cm−1 band is due to the non hydrogen bonded C1O mode of neutral phylloquinone.  相似文献   

14.
15.
In the absence of a vaccine or a cure, identification of novel HIV-1 inhibitors remains important. A paper in Retrovirology describes a rationally designed bi-specific protein that irreversibly damages the viral envelope glycoprotein complex via a two-punch mechanism. In contrast to traditional drugs that inhibit essential steps in the viral life cycle at the cell surface or in the infected cells, this inhibitor cripples free virus in the absence of cells.See research article: http://www.retrovirology.com/content/9/1/104  相似文献   

16.
Highlights? UNC-6 (Netrin), its receptor UNC-40 (DCC), and the TRIM protein MADD-2 promote axon branching ? MADD-2 and UNC-40 proteins are localized to the affected axon branch ? MADD-2 stimulates axon attraction to Netrin by acting as an UNC-40 cofactor ? MADD-2 enables UNC-40 to recruit MIG-10, an actin-binding effector protein  相似文献   

17.
The dynamics of superoxide anion (O2) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O2 in vivo. Here, we establish an in vivo method using a novel electrochemical O2 sensor. O2 generated is measured as a current and evaluated as a quantified partial value of electricity (Qpart), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O2 generation in xanthine–xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O2 current began to increase 1 h after lipopolysaccharide, and Qpart increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O2 were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O2 in vivo and could be used to monitor and treat the pathophysiology caused by excessive O2 generation in animals and humans.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号