首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The aim of the study was to evaluate the efficacy of probiotics on gut‐derived sepsis caused by Pseudomonas aeruginosa in immunocompromised mice. Methods and Results: After oral inoculation of P. aeruginosa, mice were treated with cyclophosphamide to induce leucopenia and translocation of the intestinal P. aeruginosa into blood, thereby producing gut‐derived sepsis. In this model, administration of 1 × 109 CFU of Bifidobacterium longum strain BB536 for 10 days significantly (P < 0·01) increased the survival rate compared with groups of mice administered either with Bifidobacterium breve strain ATCC 15700 or excipients contained in the probiotic bacterial powder. Administration of B. longum significantly decreased viable counts of P. aeruginosa in the liver and blood compared with other groups. Culture of intestinal contents revealed a significantly lower viable count of P. aeruginosa in the jejunum of B. longum‐treated mice compared with other groups of mice. Furthermore, in vitro data demonstrated that B. longum possessed apparently higher adherent activity to Caco‐2 cell monolayers and significantly suppressed the adherence of P. aeruginosa to the monolayers of cells compared with other groups. Conclusion: Oral administration of B. longum protects mice against gut‐derived sepsis caused by P. aeruginosa, and the effect may be due to interference of P. aeruginosa adherence to intestinal epithelial cells. Significance and Impact of this Study: This study demonstrated that oral administration of B. longum BB536 is effective to protect against opportunistic infection with drug‐resistant bacteria such as P. aeruginosa. The results suggest that probiotics may play an important role even in the immunocompromised patients.  相似文献   

2.
We present some studies on the mechanisms of pathogenesis based on experimental work and on its interpretation through a mathematical model. Using a collection of clinical strains of the opportunistic human pathogen Pseudomonas aeruginosa, we performed co-culture experiments with Dictyostelium amoebae, to investigate the two organisms’ interaction, characterized by a cross action between amoeba, feeding on bacteria, and bacteria exerting their pathogenic action against amoeba. In order to classify bacteria virulence, independently of this cross interaction, we have also performed killing experiments of bacteria against the nematode Caenorhabditis elegans.A mathematical model was developed to infer how the populations of the amoeba-bacteria system evolve according to a number of parameters, taking into account the specific features underlying the interaction. The model does not fall within the class of traditional prey-predator models because not only does an amoeba feed on bacteria, but also it is in turn attacked by them; thus the model must include a feedback term modeling this further interaction aspect. The model shows the existence of multiple steady states and the resulting behavior of the solutions, showing bi-stability of the system, gives a qualitative explanation of the co-culture experiments.  相似文献   

3.
The authors evaluated the synergistic effect of tumour necrosis factor (TNF) and interleukin 1 (IL-1) in gut-derived sepsis in mice. After colonization of Pseudomonas aeruginosa strain D4 in the gastrointestinal tract, cyclophosphamide was administered to induce bacterial translocation of the P. aeruginosa and thereby to cause gut-derived sepsis. In this model, treatment either with 8 microg/kg of recombinant human TNF-alpha (rhTNF-alpha) or 2 microg/kg of recombinant human interleukin 1alpha (rhIL-1alpha) solely did not affect the mortality, whereas combined administration of the same doses of rhTNF-alpha and rhIL-1alpha significantly increased the mortality rate in comparison with saline-treated mice. Bacterial counts in liver and blood were significantly higher in rhTNF-alpha and rhIL-1alpha treated mice than in saline-treated mice. Endogenous TNF-alpha and IL-1beta productions were stimulated after combined treatment with rhTNF-alpha and rhIL-1alpha. On the contrary to these adverse effects, combined treatment with 500 microg/kg of rhTNF-alpha and 50 microg/kg of rhIL-1alpha on the day before the administration of cyclophosphamide significantly reduced the mortality from septic infection. We conclude that TNF and IL-1 synergistically affect the mortality of mice after gut-derived sepsis due to P. aeruginosa in mice and the timing of treatment with these cytokines causes both extremes in their effects.  相似文献   

4.
The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa   总被引:10,自引:0,他引:10  
Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide variety of infections. The cell-density-dependent signaling mechanisms known as quorum sensing play a role in several of these infections including corneal, lung and burn wound infections. In addition, the quorum-sensing systems contribute to the ability of P. aeruginosa to form biofilms on medically important devices. The quorum-sensing systems accomplish their effect by controlling the production of different virulence factors and by manipulating the host immune response.  相似文献   

5.
Pseudomonas aeruginosa secretes the virulence factor alkaline protease (AprA) to enhance its survival. AprA cleaves one of the key microbial recognition molecules, monomeric flagellin, and thereby diminishes Toll-like receptor 5 activation. In addition, AprA degrades host proteins such as complement proteins and cytokines. P. aeruginosa encodes a highly potent inhibitor of alkaline protease (AprI) that is solely located in the periplasm where it is presumed to protect periplasmic proteins against secreted AprA. We set out to study the enzyme-inhibitor interactions in more detail in order to provide a basis for future drug development. Structural and mutational studies reveal that the conserved N-terminal residues of AprI occupy the protease active site and are essential for inhibitory activity. We constructed peptides mimicking the N-terminus of AprI; however, these were incapable of inhibiting AprA-mediated flagellin cleavage. Furthermore, we expressed and purified AprI of P. aeruginosa and the homologous (37% sequence identity) AprI of Pseudomonas syringae, which remarkably show species specificity for their cognate protease. Exchange of the first five N-terminal residues between AprI of P. syringae and P. aeruginosa did not affect the observed specificity, whereas exchange of only six residues located at the AprI surface that contacts the protease did abolish specificity. These findings are elementary steps toward the design of molecules derived from the natural inhibitor of the virulence factor AprA and their use in therapeutic applications in Pseudomonas and other Gram-negative infections.  相似文献   

6.
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO√ donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.  相似文献   

7.
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO√ donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.  相似文献   

8.
Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (K(D) values) spanning six orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both the apparent K(D) and the apparent active concentration of the antigen, thereby increasing the information content of an assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay orientation employed or the purity of the recombinant or native antigens.  相似文献   

9.
10.
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.  相似文献   

11.
A comparative study of virulence of P. aeruginosa strains PAO containing and not containing plasmids has been made. A number of plasmids which are present in strains PAO decrease their virulence for mice 3-7 times. The virulence-affecting plasmids considerably differ in their biological properties. Bacterial mutations rpm, selected as mutations stabilizing RP4 plasmid in PAO cells, have also been found to affect virulence of bacteria, decreasing its level several times. The introduction of plasmids into PAO cells carrying mutations rpm is not accompanied by decrease of virulence.  相似文献   

12.
13.
14.
The profuse production of the exopolysaccharide alginate results in mucoidy, a critical virulence factor expressed by Pseudomonas aeruginosa during chronic respiratory tract infections in cystic fibrosis. Studies of the regulation of this pathogenic determinant have unravelled at least two levels of control, including bacterial signal transduction systems and histone-like elements. Although only in its initial phase, an understanding of the dual control of mucoidy may help to illuminate adaptive processes that depend on the combination of these regulatory factors. Integration of specific signals transduced by the two-component systems with inputs generated by the general state of bacterial nucleoids may govern the expression of certain virulence determinants and provide a framework facilitating selection of phenotypes successful under particular environmental conditions and selective pressures.  相似文献   

15.
16.
17.
The effect of concentrated cell-free extracellular material from stationary-phase cultures of Burkholderia cepacia 10661 and Pseudomonas aeruginosa PAO1 on virulence factor production in B. cepacia was assessed. While increasing concentrations of the B. cepacia exoproduct caused a slight increase in siderophore, lipase, and protease production in the producing organism, a significant in productivity was observed for all three virulence factors with the addition of the PAO1 exoproduct. Moreover, the addition of the exoproduct from a strain of P. aeruginosa producing reduced amounts of autoinducer caused only a slightly greater response than that of the control. Both B. cepacia 10661 and P. aeruginosa PAO1, along with two matched clinical isolates of both organisms obtained from a cystic fibrotic patient, were shown to produce variable amounts of three different types of autoinducer. The potential for interspecies signalling in microbial pathogenicity is discussed.  相似文献   

18.
Reporter gene technology was employed to detect the activity of an alginate promoter of Pseudomonas aeruginosa when the organism was grown as a biofilm on a Teflon mesh substratum and as planktonic cells in liquid medium. Alginate biosynthetic activity was determined with a mucoid cell line derived from a cystic fibrosis isolate and containing an alginate algC promoter fused to a lacZ reporter gene. Reporter activity was demonstrated with chromogenic and fluorogenic substrates for beta-galactosidase. Expression of algC was shown to be upregulated in biofilm cells compared with planktonic cells in liquid medium. Gene up-expression correlated with alginate biosynthesis as measured by Fourier transform infrared spectroscopy, uronic acid accumulation, and alginate-specific enzyme-linked immunosorbent assay. The algC promoter was shown to have maximum activity in planktonic cultures during the late lag and early log phases of the cell growth cycle. During a time course experiment, biofilm algC activity exceeded planktonic activity except during the period immediately following inoculation into fresh medium. In continuous-culture experiments, conversion of lacZ substrate was demonstrated microscopically in individual cells by epifluorescence microscopy.  相似文献   

19.
We are exploiting the broad host range of the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 to elucidate the molecular basis of bacterial virulence in plants, nematodes, insects and mice. In this report, we characterize the role that two PA14 gene products, MucD and AlgD, play in virulence. MucD is orthologous to the Escherichia coli periplasmic protease and chaperone DegP. DegP homologues are known virulence factors that play a protective role in stress responses in various species. AlgD is an enzyme involved in the biosynthesis of the exopolysaccharide alginate, which is hyperinduced in mucD mutants. A PA14 mucD mutant was significantly impaired in its ability to cause disease in Arabidopsis thaliana and mice and to kill the nematode Caenorhabditis elegans. Moreover, MucD was found to be required for the production of an extracellular toxin involved in C. elegans killing. In contrast, a PA14 algD mutant was not impaired in virulence in plants, nematodes or mice. A mucDalgD double mutant had the same phenotype as the mucD single mutant in the plant and nematode pathogenesis models. However, the mucDalgD double mutant was synergistically reduced in virulence in mice, suggesting that alginate can partially compensate for the loss of MucD function in mouse pathogenesis.  相似文献   

20.
ExoU is a 74-kDa, water-soluble toxin injected directly into mammalian cells through the type III secretion system of the opportunistic pathogen, Pseudomonas aeruginosa. Previous studies have shown that ExoU is a Ca2+-independent phospholipase that requires a eukaryotic protein cofactor. One protein capable of activating ExoU and serving as a required cofactor was identified by biochemical and proteomic methods as superoxide dismutase (SOD1). In these studies, we carried out site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the effects of SOD1 and substrate liposomes on the structure and dynamics of ExoU. Local conformational changes within the catalytic site were observed in the presence of substrate liposomes, and were enhanced by the addition of SOD1 in a concentration-dependent manner. Conformational changes in the C-terminal domain of ExoU were observed upon addition of cofactor, even in the absence of liposomes. Double electron-electron resonance experiments indicated that ExoU samples multiple conformations in the resting state. In contrast, addition of SOD1 induced ExoU to adopt a single, well-defined conformation. These studies provide, to our knowledge, the first direct evidence for cofactor- and membrane-induced conformational changes in the mechanism of activation of ExoU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号