首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

2.
During the course of chromate-induced acute renal failure (ARF), urinary kallikrein excretion (UKE), a serine protease of distal tubule origin in the normal animal was decreased but tissue kallikrein concentration (TK) was increased, suggesting intracellular accumulation. Severe morphological lesions were observed in proximal tubular cells which showed brush border damage, numerous vesicles, necrosis and liquefaction of cytoplasmic material. Less marked changes were also present in distal tubules: large apical vacuoles and swollen mitochondria. Compared to normal rats, using the peroxidase-anti-peroxidase (PAP) method for light microscopy, greater kallikrein immunoreactivity was detected along the apical pole in distal tubules, on the membrane and in the cytoplasm as well as in the glomerulus. By immunoelectron microscopy, kallikrein was found in the connecting apical area, along the luminal, basolateral and basement membranes, in some vesicles, in Golgi apparatus and on ribosomes bound to endoplasmic reticulum. In the glomerulus, kallikrein was observed along the luminal surface of endothelial cell. After 14 days a progressive recovery of renal function, tissue morphology and UKE towards control values was observed. The presence of immunoreactive kallikrein in the glomerulus observed only during ARF confirmed the previous demonstration of kallikrein mRNA in the glomerulus. The cellular accumulation results more likely from a dysfunction of a general secretory mechanism due to cell membrane alteration than from a specific inhibition of kallikrein production and secretion.  相似文献   

3.
Summary Treatment of rats with cisplatin (4 mg kg-1body wt i.p. injection) induced variations of urinary kallikrein excretion (UKE). Three phases were observed: a transient increase of UKE one day after injection, followed by a decrease up to 10 days suggesting an altered biosynthesis and a recovery phase with return to normal control values, 21 days after injection. Early morphological lesions were observed in proximal tubule cells on day 1; severe changes and tubular necrosis were observed in the following days. Less marked changes were also present in distal tubules but the vacuolated and desquamated cells appeared in the lumen of the tubules. By immunocytochemical methods, kallikrein was observed in connecting tubule cells, but also in some proximal tubule cells and along the endothelial side of the glomerular basement membrane and urinary space of glomeruli. An intense labelling was present in desquamated epithelial cells in dilated lumen of tubules. This study provides evidence of the presence of immunoreactive kallikrein in the glomerulus, already reported during acute failure, and confirms the use of urinary kallikrein measurements as a useful non-invasive index to assess a possible nephrotoxic effect at the distal level.  相似文献   

4.
The distribution of kallikrein in dog kidneys was studied. It was found that kallikrein decreased from the outer to the inner cortex and that the medulla and papilla had very little kallikrein. The site of kallikrein secretion in the nephron was also studied by performing stop-flow techniques in dogs. The highest kallikrein concentration was found in the fractions with the lowest sodium concentration. It was concluded that kallikrein is secreted into the urine at the level of the distal tubule by either the tubule itself or by a structure related to this part of the nephron. In addition, the possible involvement of the kallikrein-kinin system in the regulation of sodium excretion was investigated. Circulating kinins and urinary kallikrein were increased in saline-loaded dogs. Urinary kallikrein also increased in dogs that have "escaped" the sodium-retaining effect of desoxycorticosterone. Experiments in rats with different sodium intake showed a relationship between water and sodium excretion and urinary kallikrein. These data suggest that the kallikrein-kinin system could participate in the regulation of the renal function at the level of the distal tubule or collecting duct.  相似文献   

5.
The actions of cortisol on fetal renal function   总被引:1,自引:0,他引:1  
Renal function was studied in 6 fetal sheep, aged 126-135 days, before and after 3 injection of 15 mg of cortisol given at intervals of 12 h. Cortisol caused a significant rise in both renal blood flow (P less than 0.05) and glomerular filtration rate (P less than 0.005), and in urine flow rate (P less than 0.02) but it did not consistently cause a natriuresis. The urinary pH was unchanged following cortisol treatment, but bicarbonate excretion increased. Urinary phosphate excretion was increased (P less than 0.005) because of a rise in filtered phosphate and a fall in phosphate reabsorption. The titratable acid excretion increased (P less than 0.005) but urinary ammonium excretion did not. The total amount of sodium reabsorbed increased after cortisol but the amount of sodium reabsorbed in the proximal tubule did not increase, so fractional reabsorption in the proximal tubule decreased from 61.7 +/- 4.1% to 47.3 +/- 4.2% (P = 0.01). The total amount of sodium reabsorbed in the distal tubule increased and distal fractional reabsorption increased from 33.3 +/- 2.4% to 47.3 +/- 4.2% (P less than 0.01). Cortisol may increase the capacity of the immature kidney to play a role in fluid and electrolyte homeostasis by increasing glomerular filtration rate and delivering more sodium and water to the distal nephron where the reabsorption of sodium and water can be modified independently and in accordance with need.  相似文献   

6.
24-h urinary kallikrein excretion in male Sprague-Dawley rats was measured before and after 14 days with 100 mM potassium chloride as drinking fluid ad libitum. Urinary kallikrein excretion increased in K+-adaptation. The increase was greater when the rats were given distilled water rather than 100 mM sodium chloride to drink prior to the potassium chloride. The urinary potassium excretion increased in all rats studied. The urinary sodium excretion, urine volume and fluid intake increased significantly in rats that had distilled water to drink prior to the KCl. In marked contrast, when rats were offered NaCl prior to KCl, the urinary sodium excretion was unaffected while the urine volume and fluid intake decreased significantly. This study shows that prior NaCl intake abolishes the natriuretic and diuretic effects of KCl load and only suppresses the increase in urinary kallikrein excretion. This suggests that K+ secretory activity at the distal tubules is the major determinant of the release of renal kallikrein in the rat.  相似文献   

7.
Urinary kallikrein excretion was compared with urea excretion in the rat and the results showed that they were correlated. Like urea excretion is flow-dependent, we conclude that the principal mechanism regulating kallikrein excretion is a wash-out effect on renal kallikrein.  相似文献   

8.
Urinary kallikrein excretion is reduced in patients with hypertension of unknown etiology. In addition, the excretion of this renal, kinin-forming enzyme was found to be elevated in hypertensive patients with primary aldosteronism. Aldosterone regulates kallikrein excretion, as normal subjects show increased kallikrein excretion in response to a low sodium intake, high potassium intake, or the synthetic mineralocorticoid, fludrocortisone, whereas kallikrein excretion falls during treatment with spironolactone. The relationship between kallikrein excretion and aldosterone activity may directly reflect the intrarenal activity of the kallikrein-kinin system, as determined by studies of kallikrein levels from isolated renal cells or of plasma kinin levels in man in response to postural changes or saline loads. Some patients with essential hypertension do not show a normal increase in kallikrein excretion in response to low dietary sodium intake despite an apparently normal aldosterone response, suggesting that there may be a defect in the renal kallikrein-kinin system in these patients. Whether these findings are of pathogenetic significance in human hypertensive disease remains to be determined.  相似文献   

9.
The relationship of urinary kallikrein excretion to urine volume, and to urinary sodium and potassium excretions was studied in normal rats during furosemide diuresis and superimposed injection of amiloride, a K+-sparing diuretic. Continuous infusion of furosemide increased urinary kallikrein, sodium and potassium excretions and the urine volume. Amiloride injection during furosemide diuresis caused further increase in diuresis and natriuresis, but a prompt decrease in urinary kallikrein excretion to basal level, and potassium excretion to below the basal level. The significant correlation of urinary kallikrein excretion to urinary potassium excretion, but not to urine volume and urinary sodium excretion after amiloride injection suggests that the major determinant of urinary kallikrein excretion is renal potassium secretion through a mechanism that is affected by amiloride.  相似文献   

10.
Epithelial Na Channels (ENaC) are responsible for the apical entry of Na(+) in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K(+) or low-Na(+) diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (I(Na)) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity.  相似文献   

11.
R K Handa  V M Buckalew 《Life sciences》1992,51(20):1571-1575
The effect of myristoyl-lysophosphatidylcholine (myristoyl-LPC) on renal hemodynamics, electrolyte and water excretion was examined over a 90 min period in sodium pentobarbital anesthetized male Sprague Dawley rats. Intravenous infusion of myristoyl-LPC at 13 +/- 3 pmol/min resulted in a small fall in systemic blood pressure, a 13% decrease in renal plasma flow without significantly altering glomerular filtration rate and produced a slightly greater excretion of sodium and water than vehicle controls. These results suggest that short term myristoyl-LPC administration can significantly alter renal function producing a weak natriuresis and diuresis which is not dependent on systemic blood pressure and renal hemodynamic changes.  相似文献   

12.
Kidney weight, length of superficial and juxtamedullary proximal tubules, glomerular diameter, kidney filtration rate and PAH clearance, sodium excretion and intrarenal distribution of filtration (with 14C-ferrocyanide) were measured in the remaining hypertrophic kidneys of dogs 10 days after unilateral nephrectomy. Whereas kidney weight increased to 75 percent of the original total renal mass, proximal tubule length and mean glomerular diameter remained unchanged. PAH and creatinine clearance, and absolute, but not fractional, sodium excretion, rose significantly. The ratio superficial/juxtamedullary filtration rate remained unchanged, indicating parallel increases of filtration in both cortical regions of hypertrophied kidneys.  相似文献   

13.
Urinary kallikrein excretion was studied in a number of animal models of hypertension. Kallikrein excretion was subnormal in spontaneously hypertensive rats as compared to Wistar/Kyoto rats and in rats made hypertensive by a clip on one renal artery. Kallikrein excretion was supranormal in rats made hypertensive by desoxycorticosterone and salt and in rats receiving desoxycorticosterone alone. It was subnormal after bilateral adrenalectomy. Kallikrein excretion increased in normotensive rats fed a low-sodium diet but was unchanged by a high-sodium diet. Thus, kallikrein excretion responded to changes in activity of sodium-retaining steroids and was not correlated with excretion of salt or water. In studies in dogs with stenosis of one renal artery kallikrein excretion was decreased on the stenoic side and the decrease correlated highly with the reduction in renal blood flow. While the role of the kallikrein-kinin system is still unclear the data indicate that the kidney may modify the initiation or maintenance of hypertension via this potent vasodilator system.  相似文献   

14.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

15.
A new neurohypophyseal hormone analogue, Ala-Gly-[Arg8]-vasopressin, was synthesized by the stepwise solution techniques and its effect on systemic blood pressure and renal function was examined in nondiuretic Sprague-Dawley rats. Clearance of inulin was used to study glomerular filtration rate. Intravenous administration of 50 pmole/100 g. b. wt. Ala-Gly-[Arg8]-vasopressin caused diuresis and natriuresis without significant change of mean arterial blood pressure. The fractional excretion of sodium was increased by 225% within 10 min after the analogue administration. The present study suggests that this analogue has a direct effect on renal tubular transport of electrolyte independent of affecting systemic circulation.  相似文献   

16.
The purpose of this study was to investigate the effect of norepinephrine and vasopressin on urinary kallikrein excretion in the rat. Two studies were undertaken: (a) acute experiments in which the rats were infused with 30% dextrose in water with the addition of norepinephrine or vasopressin, (b) chronic experiments in which the drugs were infused during seven days through an osmotic minipump. In acute experiments, urinary kallikrein excretion increased without modification in urinary flow and glomerular filtration rate. In chronic experiments, urinary kallikrein excretion was not modified in norepinephrine-treated rats and decreased in vasopressin-infused animals. This decrease followed the modifications of the urine flow. In chronic experiments the dextrose infusion increased urinary kallikrein excretion. In all the groups studied a positive correlation between urine flow and urinary kallikrein excretion was observed. It is concluded that norepinephrine and vasopressin are important stimulators of the urinary kallikrein excretion only in those circumstances where it is necessary to eliminate an excess of water.  相似文献   

17.
We have found that arginine vasopressin (AVP) (10 pg/ml) stimulates urinary kallikrein in the isolated erythrocyte perfused rat kidney. (In this model, perfusate flow rate approximates blood flow rates in vivo and morphology is normal.) Urinary kallikrein excretion rose from 6.9 +/- 0.8 to 14.9 +/- 2.4 ng/min 20 min after the addition of AVP to the perfusate, and then fell towards baseline levels over the next 30 min. 1-Desamino-8-D-AVP (8 pg/ml) caused a comparable increase in kallikrein excretion. Prostaglandin synthesis inhibition with indomethacin did not alter the stimulatory effect of AVP on kallikrein excretion. Parathyroid hormone 1-34 (144 ng/ml) and calcitonin (102 ng/ml) also increased urinary kallikrein. Kallikrein excretion rose from 9.1 +/- 2.0 to 24 +/- 4.5 ng/min in response to calcitonin and from 8.3 +/- 1.6 to 43.7 +/- 3.4 ng/min following the addition of parathyroid hormone to the perfusate. Kallikrein was found to accumulate in the perfusate in a linear fashion. Based on the slope of the relationship between perfusate kallikrein and time, the rate of release of kallikrein into the perfusate was estimated to be 0.79 ng/min in control kidneys. The rate of release of kallikrein into the perfusate in kidneys treated with AVP was the same (0.74 ng/min). Thus while kallikrein is released into the perfusate, this process is not influenced by AVP. In conclusion, AVP stimulates release of kallikrein into the urine (but not the perfusate) independently of systemic events. The effect of AVP is not mediated by prostaglandins. This effect of AVP is mediated via stimulation of the V2 receptor and also occurs in response to two other hormones (calcitonin and parathyroid hormone) that are known to stimulate adenyl cyclase in the rat distal nephron.  相似文献   

18.
Hypertension and its related increase in cardiovascular morbidity in postmenopausal women is a major public health problem. The hypotensive property of urinary kallikrein has been described since 1909. Despite the controversy surrounding the effects of hormone replacement therapy on blood pressure regulation, its mechanisms remain incompletely understood, and no evidence has yet been provided for its effects on renal kallikrein excretion in postmenopausal women. In a double-blind, randomized study we examined the effects of hormone replacement therapy in the form of 2 mg 17-beta estradiol (ERT) or 2 mg 17-beta estradiol combined with continuous 5 mg medroxyprogesterone acetate (HRT) on urinary kallikrein excretion in postmenopausal women. Thirty-nine postmenopausal women collected their urine for 24 hours on two separate occasions 3 months apart. During the 3 month period women were randomized to placebo, ERT, or HRT. Urine samples were assayed for kallikrein activity, normalized to urine creatinine and expressed as mU/gm creatinine. Urinary kallikrein excretion increased significantly after 3 months in the ERT (p < 0.001) and HRT (p < 0.01) groups, and decreased non-significantly in the placebo group (p > 0.06). There were no significant blood pressure changes after 3 months of therapy. The findings demonstrate that hormone replacement therapy in the form of estrogen or estrogen combined with continuous medroxyprogesterone is effective in increasing urinary kallikrein excretion. Given that a decrease in kallikrein excretion may mark risk for development of hypertension, the findings of this study are of value in demonstrating a novel mechanism underlying cardioprotective properties of postmenopausal hormone replacement therapy in women without pre-existing coronary disease.  相似文献   

19.
The role of the renal nerves in determining renal function after relief of 24-h unilateral ureteral obstruction (UUO) was studied using clearance techniques in anaesthetized rats. Acute renal denervation during the first 1--2 h after relief of UUO resulted in a significant increase in glomerular filtration rate (GFR), renal plasma flow (RPF), urine flow, and sodium and potassium excretion, changes which were not seen in the sham-denervated postobstructive kidney. Acute denervation of sham-operated normal kidneys caused a similar natriuresis and diuresis but with no change in GFR or RPF. Chronic renal denervation 4--5 days before UUO denervated postobstructive controls, while chronic denervation alone was associated with a significantly higher urine flow and sodium excretion rate from the denervated kidney. The effectiveness of renal denervation was confirmed by demonstrating marked depletion of tissue catecholamines in the denervated kidney. It was concluded that renal nerve activity plays a significant but not a major role in the functional changes present after relief of UUO. Chronic renal denervation did not protect against the functional effects of unilateral ureteral obstruction.  相似文献   

20.
Water, sodium and proteins renal excretion in with collodion Page's method hypertensive rats is compared with that of same Wistar strained control rats. Blood pressure of treated animals (n = 16) is 193.1 Hg mm (138 in control rats). Urinary flow increases from 19.5 to 33.7 ml/24 h (+ 72.8%), sodium excretion from 29.6 to 37.5 mg/24 h (+ 26.7%) and total proteins excretion from 23.5 to 63 mg/24 h (+ 169%. This data are correlated with the renal cortex morphological changes with photon and electron microscope. Severe damages are seen in Bowman's capsule and in glomerular copruscules, especially at the epithelial layer level. Important proteic pools occur within tubular lumen. Proximal tubular epithelium seems normal. On the other hand, distal tubular epithelium seriously scales. So, important water, sodium and proteins excretion increase in our experimental hypertension model can be explained. It is also discussed about functional and structural modifications analogy in our model's rats and in spontaneously hypertensive rats (SHB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号