首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Scagliarini, S., Pupillo, P. and Valenti, V. 1988. Isoformsof NADP-dependent malic enzyme in tissues of the greening maizeleaf.—J. exp. Bot. 39: 1109–1119. The compartmentation of the isoforms of NADP-dependent malicenzyme (E.C. 1.1.1.40 [EC] ) has been studied in cell-free extractsand in enzymatically-isolated protoplasts of mesophyll tissue(MT) and bundle sheath (BS) strands of greening maize leaves.The etiolated leaf of 10-d-old seedlings contains a cytosolicisozyme with a pl of 5.4 ?0.1 at low specific activity (s.a,45 ? 3 nmol min–1 mg–1 protein), found both in MTand BS. The green leaf on the other hand contains the dominantBS chloroplast isozyme with pl 4.6 ? 0.2 at a s.a, of 370 ?40 nmol min–1 mg–1 protein (3.2 ? 0.5 µmolmin–1 mg–1 chl) and a minor, previously undescribedisoform with pl 6.5 ? 0.1 also localized in the BS at a s.a.of 38 ? 6 nmol min–1 mg–1 protein. Green MT protoplastshave only traces of pl 4.6 isozyme. After illumination of dark-grown seedlings, the total leaf activityshows a rapid increase (1.5-fold within 2 h), attributed mainlyto the pl 5.4 isozyme of MT protoplasts and BS strands. Thisis followed by a large increase of enzyme activity due to thecontinued rise of pl 5.4 isozyme for about 24 h and, after aninitial lag of a few hours, to the accumulation of pl 4.6 isozyme.After 18 h illumination, pl 4.6 and 5.4 isozyme activities tendto decline in the MT whereas they are still increasing in theBS, particularly the former. This pl 4.6 species has becomethe major one by 48 h illumination. The final pattern of greenleaves is established around 96 h light, when the chloroplastisozyme has attained its maximum level, the pl 5.4 isozyme ofBS strands has been superceded by the pl 6.5 species (also supposedto be cytosolic) and MT protoplasts retain little residual activity.Some metabolic implications of the changing pattern of NADP-dependentmalic isozymes during maize leaf greening are discussed. Key words: C4, isozymes, malic enzyme, photodifferentiation, Zea mays  相似文献   

2.
Ribulose-l,5-diphosphate (RuDP) carboxylase protein and activitywere determined in relation to net photosynthetic rate duringthe senescence of intact flag leaves of wheat on the plant.Initially the decrease in RuDP carboxylase activity was greaterthan the decline in net photosynthesis. The major decrease inRuDP carboxylase activity over this period resulted from a decreasein enzyme specific activity from 11 to 2 µmol CO2 fixedh–1 mg–1 protein. Loss of RuDP carboxylase proteindid not occur until late in senescence by which time chlorophyllconcentration had decreased by more than 50%. Treatment of flagleaves at weekly intervals with either 1000 parts 10–62-chloro-ethyltrimethylammonium chloride or 100 parts 10–6gibberellic acid with 1 part 10–6 kinetin did not significantlyaffect net photosynthetic rate, RuDP carboxylase protein oractivity during senescence.  相似文献   

3.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

4.
Ribulose bisphosphate carboxylase (EC 4.1.1.39 [EC] ) activity wasvery low in tomato leaf extracts unless prepared in the presenceof Mg2+, and polyclar AT. With young leaves, but not with fully-expanded leaves, the RuBP carboxylase activityextracted was increased by prolonged illumination of the leaves(2 h). The main effect of the light treatment was to increasethe specific activity of the enzyme but there was also a smallincrease in RuBP carboxylase protein. Tomato leaf RuBP carboxylasein extracts had specific activities in the range 0.2–0–6µmol CO2 min–1 mg–-1 total protein extracted,or 0.5–1.2 µmol CO2 min–1 mg–1 RuBPcarboxylase, and an apparent Km (CO2) at 20 ?C of 9.3 ? 1.2µM (using a of 6.407). Key words: Tomato leaf, RuBP carboxylase, Properties  相似文献   

5.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

6.
A comparison of the activity and properties of the enzyme phosphoenolpyruvatecarboxylase (PEPC) was made for plants of Sedum telephium L.grown under low (70 µmol m–2 s–1) or high(500µmol m–2 s–1) PPFD and subjected to varyingdegrees of water stress. Under well-watered conditions onlyplants grown under high PPFD accumulated titratable acidityovernight and the extractable activity of PEPC was almost 2-foldhigher in these plants than in plants grown under low PPFD.Increasing drought stress resulted in a substantial increasein the activity of PEPC extracted both during the light anddark periods and a decrease in the sensitivity to inhibitionby malic acid. The magnitude of these changes was determinedby the severity and duration of drought and by light intensity.A comparison of the kinetic properties of PEPC from severelydroughted plants revealed that plants droughted under high PPFDhad a lower Km for PEP than plants under low PPFD. Additionof 2·0 mol m–3 malate resulted in an increase inthe Km for PEP, with plants draughted under low PPFD havinga significantly higher Km in the presence of malic acid comparedto those under high PPFD. Response to the activator glc-6-P,which lowered the Km for PEP, also varied between plants grownunder the two light regimes. Under well-watered conditions PEPCextracted from plants under high PPFD was more sensitive toactivation by glc-6-P than those under low PPFD. After the severedrought treatment, however, the Km for PEP in the presence ofglc-6-P was similar for enzyme extracted from plants grown underboth light regimes. Soluble sugars and starch were depletedovernight and were both possible sources of substrate for PEPC.With increasing drought, however, the depletion of starch relativeto soluble sugars increased under both light regimes. The propertiesof PEPC and the characteristics of carbohydrate accumulation/depletionare discussed in relation to the regulation of CAM in S. telephiumgrown under different light and watering regimes. Key words: PEP carboxylase, CAM, carbohydrates, Sedum telephium  相似文献   

7.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

8.
A stable freeze-dried powder was prepared of partly purifiedribulose bisphosphate carboxylase from wheat leaves. As withpreparations from other leaves it is necessary to incubate theenzyme with Mg2$ and CO2 to achieve maximum activity. At 25°C this activity was 0.75 IU mg–1 protein for a preparationactivated at 50 °C for 10 min; the Km for CO2 was 15 µM. The time for reactivation of enzyme that had been inactivatedthrough the absence of CO2 and Mg2$ was influenced by the lengthof the inactivating treatment. After a short inactivation periodthe enzyme was reactivated within a few minutes, whereas aftera longer period several hours were needed. Enzyme in the latterstate had some properties in common with enzyme inactivatedby lower temperatures but in the presence of CO2 and Mg2$. Theenzyme kinetic characteristics are similarly affected by bothkinds of inactivation; the maximum velocity is decreased butthe affinity for CO2 is not affected. Reactivation following a long inactivating treatment becomesmore dependent on Mg2$ concentration as the temperature is increasedfrom 0 to 20 °C.  相似文献   

9.
A procedure is described for the purification of phosphoenolpyruvatecarboxylase (EC 4.1.1.31 [EC] ) and NADP-dependent malic enzyme (EC1.1.1.40 [EC] ) from sugar cane leaves. Each enzyme was purified tohomogeneity as judged by sodium dodecyl sulfate-polyacrylamidegel electro-phoresis, with about 30% yield. Phosphoenolpyruvatecarboxylase was purified 54-fold. A molecular weight of 400,000and a homotetrameric structure were determined for the nativeenzyme. The purified carboxylase had a specific activity of20.0 {diaeresis}mol (mg protein)–1 min–1, and wasactivated by glucose-6-phosphate and inhibited by L-malate.Km values at pH 8.0 for phosphoenolpyruvate and bicarbonatewere 0.25 and O.l0 mM, respectively. NADP-malic enzyme, 356-foldpurified, exhibited a specific activity of 71.2 {diaeresis}mol(mg protein)–1 min–1 and was characterized as ahomotetramer with native molecular weight of 250,000. Purifiedmalic enzyme showed an absolute specificity for NADP+ and requireda divalent metal ion for activity. Km values of 0.33 and 0.008mM for L-malate and NADP+, respectively, were determined. Thisenzyme was inhibited by several organic acids, including ketoand amino acids; while succinate and citrate increased the enzymeactivity when assayed with 10{diaeresis}M L-malate. The effectsshown by amino acids and by citrate were dependent on pH, beinghigher at pH 8.0 than at pH 7.0. (Received October 26, 1988; Accepted February 3, 1989)  相似文献   

10.
The acidophilic alga Dunaliella acidophila exhibits optimalgrowth at pH 1. We have investigated the regulation of phosphateuptake by this alga using tracer techniques and by performingintracellular phosphate measurements under different growthconditions including phosphate limitation. In batch culturewith 2·2 mol m–3 phosphate in the medium the uptakeof phosphate at micromolar phosphate concentrations followeda linear time dependence in the range of minutes and rates werein the range of 1 µmol phosphate mg–1 chl h–1,only. However, under discontinuous phosphate-limited growthconditions, tracer influx revealed a biphasic pattern at micromolarphosphate concentrations: An initial burst phase resulted ina 104-fold internal phosphate accumulation and levelled offafter about 10 s. A double reciprocal plot of the initial influxrates obtained for phosphate-limited and unlimited algae exhibitedMichaelis-Menten kinetics. Phosphate limitation caused a significantactivation of the maximum velocity of uptake, yielding Vmaxup to 1 mmol mg–1 chl h–1 as compared to valuesin the order of 50 µmol phosphate mg–1 chl h–1for the second phase (this magnitude is also representativefor non-limited batch cultures). Concomitantly the Michaelisconstant was altered from 4 mmol m–3 to 0·7 mmolm–3. The rapid uptake of phosphate was inhibited by arsenateand FCCP and was not stimulated by Na+. The pH dependence oftracer accumulation and measurements of the intracellular phosphatepool under different growth conditions indicate that at lowpH and low external phosphate concentrations the high protongradient present under these conditions is utilized for a H3PO4uptake or a H+/H2PO4 cotransport. However, when the externalphosphate concentration was increased to levels sufficientlyhigh for transport to be driven by the positive membrane potential(10 mol m–3 phosphate), the pH dependence of phosphateuptake was more complex, but could be explained by the uptakeof H3PO4 or a H+/H2PO4-cotransport at low pH and a differenttype H2PO4-transport (with unknown type of ion coupling)at high pH-values. It is suggested that this flexible couplingof phosphate transport is of essential importance for the acidresistance of Dunaliella acidophila. Key words: Acid resistance, Dunaliella acidophila, phosphate cotransport, phosphate limitation, plasma membrane, sodium  相似文献   

11.
Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85 ± 0.41 x 10–3 cm/s, a value 5–10 times higher than expected based on comparisons with other cholesterol and sphingolipid-enriched membranes. Permeabilities to urea, ammonia, and protons were measured and found to be moderately high for urea and ammonia at 8.85 ± 2.40 x 10–7and 6.84 ± 1.03 x 10–2 respectively and high for protons at 8.84 ± 3.06 x 10–2 cm/s. To examine whether caveolin or other integral membrane proteins were responsible for high permeabilities, liposomes designed to mimic the lipids of the inner and outer leaflets of the caveolar membrane were made. Osmotic water permeability to both liposome compositions were determined and a combined inner/outer leaflet water permeability was calculated and found to be close to that of native caveolae at 1.58 ± 1.1 x 10–3 cm/s. In caveolae, activation energy for water flux was high (19.4 kcal/mol) and water permeability was not inhibited by HgCl2; however, aquaporin 1 was detectable by immunoblotting. Immunostaining of rat lung with AQP1 and caveolin antisera revealed very low levels of colocalization. We conclude that aquaporin water channels do not contribute significantly to the observed water flux and that caveolae have relatively high water and solute permeabilities due to the high degree of unsaturation in their fatty acyl chains. lipid rafts; microdomains; cholesterol; aquaporin; caveolin  相似文献   

12.
Assimilatory nitrate reductase (NR) was solubilized by acetonetreatment from Plectonema boryanum and was purified 7,700-foldby heat treatment, ammonium sulfate fractionation and chromatographyon DEAE-Sephacel and Sephadex G-150. Purified NR had a specificactivity of 85 µmol NO2 formed min–1 mg–1protein. The enzyme retained both ferredoxin (Fd)- and methylviologen (MV)-linked NR activities throughout the purificationprocedure. Molecular weight was 80,000. The pH optimum was 10.5in the MV-assay and 8.5 when assayed with enzymatically reducedFd as the electron donor. Apparent Km values for nitrate andMV were 700 µM and 2,500µM in the MVassay and 55µM and 75 µM for nitrate and Fd in the Fd-assay.The enzyme was inhibited by thiol reagents and metal-chelatingreagents. (Received October 1, 1982; Accepted March 8, 1983)  相似文献   

13.
The respiratory effluxes of nodules and of roots of FiskebyV soyabean (Glycine max (L.) Merr.), grown in a controlled environment,were measured at intervals in air and 3% O2 from shortly afterthe onset of N2 fixation until plant senescence. The respiratoryburdens linked with nitrogenase plus ammonia metabolism, andnodule growth and maintenance, were calculated from gas exchangedata and related to the concurrent rates of N2 fixation. The specific respiration rates of nodules increased to a maximumof 21 mg CO2 g–1 h–1 at the time pods began development:the equivalent maximum for roots was c. 4.5 mg CO2 g–1h–1. Maximum nodule and root respiration rates per plantwere attained about 25 d later at the time N2 fixation peakedat 15 mg N d–1 plant–1. The relationship between nodule respiration and N2 fixationindicated an average respiratory cost of 13.2 mg CO2 mg–1N until the last few days of plant development Separation ofnodule respiration into the two components: nitrogenase (+ NH3metabolism) respiration and nodule growth and maintenance respiration,indicated that the latter efflux accounted for c. 20% of nodulerespiration while N2 fixation was increasing and new noduletissue was being formed. When nodule growth ceased and N2 fixationdeclined, this component of respiration also declined. The respiratorycost of nitrogenase activity plus the associated metabolismof NH3 varied between 11 mg CO2 mg–1 N during vegetativeand early reproductive growth, to 12.5 mg CO2 mg–1 N duringthe later stages of pod development. Key words: N2 fixation, Respiration, Nodules, Nitrogenase  相似文献   

14.
The electrochemical potential difference for each dissociationstate of malic acid across the tonoplast of leaf cells was examinedin two CAM plants, Graptopetalum paraguayense and Kalanchoëdaigremontiana. The concentration of malic acid in each dissociationstate was estimated from an analysis of pH and concentrationsof ionic species that included calcium, malate and isocitrate.The vacuoles contained 30–40 mM isocitrate and 50–70mM calcium in G. paraguayense, and 20–30 mM isocitrateand 70–100 mM calcium in K. daigremontiana. For the calculationof the pattern of dissociation of malic acid, the formationof chelates of calcium with malate and isocitrate, which havedifferent stability constants depending on the dissociationof the acids, were also taken into consideration. The vacuolarconcentrations of the divalently dissociated form of malic acid(mal2– were 4–7 mM and 1-3 mM in G. paraguayenseand in K. daigremontiana, respectively. To obtain informationabout the cytoplasmic concentration of malate, the apparentinhibition constant for malate of phosphoenolpyruvate carboxylasewas measured. It was about 330 µM in the dark period and60 µM in the light period. Considering an inside-positivemembrane potential, we conclude that mal2– can be takenup passively into the vacuole during the dark period and canbe released passively from the vacuole during the light period.Two types of channel (the "SV-type" channel and a novel "MU-type"channel) which we found recently in G. paraguayense [Iwasakiet al. (1992) Plant Physiol. 98: 1494] are probably involvedin the uptake and the release of malate in the diurnal CAM rhythm.The existence of a large pH-buffering capacity due to isocitricacid in the vacuole allows the accumulation of a large amountof malic acid during the diurnal CAM rhythm. (Received February 12, 1992; Accepted July 10, 1992)  相似文献   

15.
Quantitative determinations of chemical composition and oxygenconsumption rates were made for a deep-living population ofthe lobate ctenophore Bolinopsis infundibulum. Animals werecollected in the Gulf of Maine with the submersible ‘Johnson-Sea-Link’during September 1989 at depths ranging from 120 to 240 m. Carbonand nitrogen contents were similar to values reported for epipelagicctenophores. Lipid and protein levels were lower than valuestypical of epipelagic ctenophores, but higher than those ofmesopelagic species. Carbohydrate was nearly an order of magnitudehigher than previously recorded for B.infundibulum. Oxygen consumptionrates ranged from 0.004 to 0.235 µl O2 mg–1 dryweight h at temperatures ranging from 5 to 7°C. Carbon-specificmetabolic rates ranged from 0.21 to 12.73 µl O2 mg–1C h–1. Energy expenditures estimated from respirationdata (  相似文献   

16.
The capacity for C4 photosynthesis in Panicum milioides, a specieshaving reduced levels of photorespiration, was investigatedby examining the activity of certain key enzymes of the C4 pathwayand by pulse-chase experiments with 14CO2. The ATP$P1 dependentactivity of pyruvate,P1 dikinase in the species was extremelylow (0.14–0.18 µmol mg chlorophyll–1 min–1).Low activity of the enzyme was also found in Panicum decipiensand Panicum hians (related species with reduced photorespiration)and in Panicum laxum (a C3 species). The antibody to pyruvate,P1dikinase caused about 70% inhibition of the ATP$P1 dependentactivity of the enzyme in P. milioides. The activity of NAD-malicenzyme and NADP-malic enzyme in P. milioides was equally low(approximately 0.1–0.2 µmol mg chlorophyll–1min–1) and similar to the activity in P. decipiens, P.hians and P. laxum. Photosynthetic pulse-chase experiments underatmospheric conditions showed a typical C3-like pattern of carbonassimilation including the labelling of glycine and serine asexpected during photorespiration. During the pulse with 14CO2only about 1% of the labelled products appeared in malate and2–3% in aspartate. During a chase in atmospheric levelsof CO2 for up to 6 min there was a slight increase in labellingin the C4 acids. The amount of label in carbon 4 of aspartatedid not change during the chase, indicating little or no turnoverof the C4 acid via decarboxylation. The results indicate thatunder atmospheric conditions P. milioides assimilates carbondirectly through the C3 pathway. Photorespiration as indicatedby the CO2 compensation point may be repressed in the speciesby a more efficient recycling of photorespired CO2. (Received June 8, 1982; Accepted July 22, 1982)  相似文献   

17.
Guard cell protoplasts (GCP) were prepared from leaves of Commelinacommunis L. and phosphoenolpyruvate carboxylase (PEPc) activityrecorded after injection of the protoplasts directly into theassay medium. The GCP were lysed immediately by the presenceof Triton X-100 and a lowered osmotic concentration in the assaycuvette enabling PEPc activity to be measured with ‘nascent’enzyme. There was no light activation of the enzyme with KmPEP (about 3.7 mol m–3) and Vmax being similar in light-ordark-treated protoplasts. Illumination of the GCP in the presenceof CO2-free air and KCI, a treatment which is known to swellGCP, did not change the kinetics. PEPc activity at saturating PEP was very sensitive to malateinhibition, 20 mmol m–3 (the I50 value) inhibiting activityby about 50%. Inhibition was similar in light- or dark-treatedprotoplasts. Malate inhibition was, however, much less (I50= 500 mmol m–3) if the enzyme source was a protoplastextract kept in the absence of glycerol. Inclusion of 20% glycerolin the extraction medium maintained the enzyme in the malate-sensitiveform as occurred in the in vivo assays. The high apparent KmPEP and the high sensitivity to malate inhibition of GCP PEPcare features unlike those observed with PEPc from leaf tissuesof C4 and CAM plants and from GCP extracts. PEPc activity increased slightly in the presence of KCI in theassay medium up to about 10 mol m–3 and thereafter activityslowly declined as KCI concentrations increased further. Key words: Guard cell protoplasts, phosphoenolpyruvate carboxylase  相似文献   

18.
According to the Dijkshoorn-Ben Zioni model, NO3 uptakein the roots is stimulated by NO3 assimilation in theshoots, through downward phloem transport of malate synthesizedin response to reduction of NO2 to NH3. In this paper,one hypothesis resulting from this model was tested, i.e. thatthe diurnal changes in NO3 uptake are due to the lightdependence of NO3 reduction in the leaves. This dependencewas studied in detached leaves transferred to deionized wateror supplied via the transpiration stream with similar amountsof 15NO3 in light or darkness. In the dark, the reductionof previously stored NO3 or xylem-borne 15NO3was generally about 40–50% of that measured in the light.Glucose supply to the detached leaves stimulated NO3reduction in the dark, but not enough to increase it up to thesame rate as in the light. Nitrite reduction in detached leaveswas much less affected by darkness, and could be maintainedat a high level by exogenous supply of substrate. Advantagewas taken from this last observation to sustain NO2reductionin attached darkened shoots at the same rate as in the light,by ensuring an appropriate delivery of NO2 from the xylem.Although this was assumed to restore the light level of theassociated synthesis of malate, it led to a marked inhibitionof NO3 uptake. In addition, the direct supply of malateto the shoots or to the roots failed to prevent the decreaseof NO3 uptake in darkness. Thus, our conclusion is thatthe mechanisms evoked in the Dijkshoorn-Ben Zioni model do notplay an important role in the diurnal variations of NO3uptake in soybean plants. Key words: Glycine max, light/dark cycle, malate synthesis, NO3 reduction, NO3 uptake  相似文献   

19.
A technique is described to accurately assess the dermal contactdose-mortality response of molluscicides. The technique involvescarbon dioxide anaesthesia of laboratory reared Deroceras reticulatum(Müller) followed by application of test substances insolution to the dorsal surface. The LD50 of the substances testedwere as follows: Sodium pentachlorophenate, 55.9 ng.mg–1,Copper sulphate, 124.1 ng.mg–1, Methiocarb, 314.6 ng.mg–1and Potassium permanganate, 418.9 ng.mg–1 body weight. (Received 18 August 1988; accepted 17 December 1988)  相似文献   

20.
Peanut (Arachis hypogaea L. ) seed powder accumulated ATP fromAMP and phosphoenolpyruvate (PEP) at a rate of approx. 100 pmolmin–1mg powder at 35° C. When peanut seed powderwas incubated with various substrates, which may result in PEPor AMP (ADP) synthesis, then ATP accumulated. The best substratecombinations examined so far were AMP + succinate, NADH2, andAMP + malate + NAD, with activities of 33, 12 and 12 pmol minmg–1powder,respectively; AMP + malate showed very low activity. Some combinationsexhibited linear activities with time, while others had an exponential-typeprofile. The temperature dependence of the ATP accumulationdemonstrated by the Ahrrenius plot had a double phase with atransition point at 25° C. The Ea values between 15°C and 25° C were 25 000–50 000 cal/mol, while above25° C the Ea values fluctuated between 6000 and 8000 cal/mol(depending on the substrate). The AMP + PEP combination exhibiteda single-phase profile between 15° C and 40° C, withan Ea value of 22 000 cal/mol. In the presence of some substrates,ethephon (ethylene) had a stimulatory effect and caused an increasein the Ea values at the high temperature phase. A comparisonof seed powder from dormant seeds with that from non-dormantseeds revealed that some substrate combinations accumulate ATPfaster in non-dormant seeds and others do so in dormant seeds. Key words: Arachis hypogaea, ATP, Ethylene, Dormancy, Peanut, Seed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号