首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of cAMP (cyclic adenosine 3′,5′-monophosphate) and cGMP (cyclic guanosine 3′,5′-monophosphate), in ganglia from the garden snail Helix pomatia, vary considerably over the course of the day. There is a maximum in the concentration of both cyclic nucleotides between 08:00 and 12:00 (lights on 06:00 to 18:00), with the cAMP maximum occurring slightly later than that in cGMP. In addition there can be several smaller maxima in cAMP and cGMP levels; the timing of these can be markedly different from experiment to experiment, with cAMP and cGMP sometimes in and sometimes out of phase with each other. This pattern is observed in Helix which had been activated from the dormant state 4–6 days earlier, but is not present in dormant or in long-active animals. The cyclic nucleotide rhythm can be seen in ganglia maintained in organ culture, and persists for at least 24 hours after removal of the tissue from the animal. There appears to be little change in the level of basal or Na Fstimulated adenylate cyclase activity in Helix ganglia over the course of the day. On the other hand, both cAMP and cGMP phosphodiesterase activities exhibit rhythms which are consistent with the rhythms in cAMP and cGMP concentrations.  相似文献   

2.
The levels of serum potassium, blood glucose, and plasma adenosine cyclic 3':5'-monophosphate (cAMP) and guanosine cyclic 3':5'-monophosphate (cGMP) were studied after the portal vein injection of cyclic nucleotides and their derivatives, (cAMP, cGMP, N6, O2'-dibutyryl adenosine 3':5'-monophosphate (DBcAMP), N6-monobutyryl adenosine cyclic 3':5'-monophosphate (NMBcAMP), and O2'-monobutyryl adenosine cyclic 3':5'-monophosphate (OMBcAMP), into dogs. Dose-related hyperglycemic responses were observed after the injection of DBcAMP (1-8 mg/kg). Transient and prominent hyperkalemia and hyperglycemia were caused by the injection of DBcAMP, NMBcAMP, and OMBcAMP (4 mg/kg). The hyperkalemic response was highest with NMBcAMP (1.22 mequiv./L), followed by OMBcAMP (0.64), DBcAMP (0.54), cGMP (0.47), and cAMP (0.41), whereas the hyperglycemic response was highest with NMBcAMP (146 mg/100 mL), followed by DBcAMP (93.6), OMBcAMP (77.1), and cAMP (56.0), and there was only a slight change with cGMP (28.4) compared with the control. The plasma level of cAMP was maximal with DBcAMP (1.92 nmol/mL), followed by NMBcAMP (1.28) and OMBcAMP (0.76), whereas the plasma levels of cGMP showed no evident change, except that caused by DBcAMP (0.27). Of the cyclic nucleotides tested, NMBcAMP was found to be most potent in causing both hyperkalemia and hyperglycemia. Based on these results, possible correlations between hyperkalemia, hyperglycemia, and plasma levels of cAMP and cGMP are discussed.  相似文献   

3.
DEAE-Bio-Gel chromatography of 100,000 X g supernatant from cultured HTC hepatoma cells separated cyclic nucleotide phosphodiesterase into three forms, numbered E I, E II, and E III in order of elution from the column, E I had a low Km for cyclic guanosine 3':5'-monophosphate (cGMP) and a high Km for cyclic adenosine 3':5'-monophosphate (cAMP), E II exhibited anomalous kinetics. At low substrate concentrations (0.5 muM) cGMP was hydrolyzed more rapidly than cAMP and hydrolysis of 0.5 muM cAMP was stimulated by 1 muM cGMP. E III had a low Km for cAMP. Incubation of cells with 1 muM dexamethasone for 72 h decreased the activity of E I and E II. In cells incubated with N6,O2'-dibutyryl cAMP plus 3-isobutyl-1-methylxanthine for 14 h the activity of E III was increased approximately 100%. Similar activities of calcium-dependent, heat stable phosphodiesterase activator were recovered from supernatants from all cells. These studies have established the presence, in a homogeneous population of hepatoma cells, of at least three forms of cyclic nucleotide phosphodiesterase, the activities of which can be independently regulated.  相似文献   

4.
Soluble cyclic nucleotide phosphodiesterase of rat uterus displays distinct structural and regulatory properties. Like phosphodiesterases from many mammalian sources the soluble uterine enzyme system exhibits nonlinear Lineweaver--Burk kinetics with cyclic adenosine 3':5'-monophosphate (cAMP) as substrate (apparent Kms congruent to 3 and 20 micron) and linear kinetics with cyclic guanosine 3':5'-monophosphate (cGMP) as substrate (apparent Km congruent to 3 micron). Unlike most other mammalian phosphodiesterases, however, numerous separation procedures reveal only a single form of uterine phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP. A single form of the enzyme is observed upon sucrose gradient centrifugation (7.9 S), agarose gel filtration, and DEAE-cellulose chromatography at either pH 8.0 OR 6.0. Heat denaturation (50 degrees C) of soluble uterine phosphodiesterase causes the loss of both cAMP and cGMP hydrolytic activities at the same rate. Isoelectric focusing reveals major (pI = 5.2) and minor forms (pI = 5.8) of phosphodiesterase which both catalyze the hydrolysis of the two cyclic nucleotide substrates. In vivo administration of estradiol produces identical decreases in the activities of cAMP and cGMP phosphodiesterase. These results raise the possibility that the uterus contains a single form of soluble phosphodiesterase which catalyzes the hydrolysis of both cAMP and cGMP.  相似文献   

5.
Cyclic nucleotide derivatives have been used as a tool to characterize distinct catalytic sites on phosphodiesterase enzyme forms: the cGMP-stimulated enzyme from rat liver and the calmodulin-sensitive enzyme from rat or bovine brain. Under appropriate assay conditions, the analogues showed linear competitive inhibition with respect to cAMP (adenosine 3',5'-monophosphate) as substrate. The inhibition sequence of the fully activated cGMP-stimulated phosphodiesterase was identical to the inhibition sequence of the desensitized enzyme, i.e. the enzyme which has lost its ability to be stimulated by cGMP. The inhibition pattern could, therefore, not be attributed to competition with cGMP at an allosteric-activating site. Also, the inhibition sequence of the calmodulin-sensitive phosphodiesterase was maintained whether activity was basal or fully stimulated by calmodulin. When cAMP and cGMP, with identical chemical ligands substituted at the same position, were compared as inhibitors of the calmodulin-sensitive phosphodiesterase, the cGMP analogues were always the more potent suggesting that, for that enzyme, the catalytic site was sensitive to a guanine-type cyclic nucleotide structure. Comparing the two phosphodiesterases, it was possible to establish both similar and specific inhibitor potencies of cyclic nucleotide derivatives. In particular, the two enzymes exhibited large differences in analogue specificity modified at C-6, 6-chloropurine 3',5'-monophosphate or purine 3',5'-monophosphate.  相似文献   

6.
The relationship between the levels of cyclic nucleotides and dimorphic transition in Candida albicans was examined. The results showed that cells of this pathogenic fungus contained both cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP), the concentration of the latter being about one-tenth that of the former in stationary-phase cells of the yeast form. Our results further indicated that germ tube formation induced by incubation at 40 degrees C followed a rise in cAMP concentration in the cell with no accompanying change in cGMP content. Cysteine, which suppressed germination, also reversed the increase in intracellular cAMP concentration. Dibutyryl cAMP (1 MM) significantly promoted germination in proline medium at temperatures of 32 to 34 degrees C. These results suggested that cAMP was one of the controlling factors in the morphological transition in Candida albicans.  相似文献   

7.
Studies on the crisp-1 (cr-1), cyclic adenosine 3',5'-monophosphate (cAMP)-deficient mutants of Neurospora crassa were undertaken to characterize the response of these mutants to exogenous cyclic nucleotides and cyclic nucleotide analogs. A growth tube bioassay and a radioimmune assay for cyclic nucleotides yielded the following results. (i) 8-Bromo cAMP and N6-monobutyryl cAMP but not dibutyryl cAMP are efficient cAMP analogs in Neurospora, stimulating mycelial elongation of the cr-1 mutants. Exogenous cyclic guanosine 3'5'-monophosphate (cGMP) also stimulates such mycelial elongation. (ii) Both cAMP levels and cGMP levels found in cr-1 mycelia are lower than those in wild type. However, the levels of both cyclic nucleotides are normal in conidia of cr-1. The data on cr-1 mycelia and those reported earlier in Escherichia coli (M. Shibuya, Y. Takebe, and Y. Kaziro (Cell 12:528-528, 1977) show a previously unexpected relationship between cAMP and cGMP metabolism in microorganisms. The semicolonial morphology of another adenylate cyclase-deficient mutant of Neurospora, frost, was not corrected by exogenous cyclic nucleotides or by phosphodiesterase inhibitors indicating that the frost morphology is probably not caused by low endogenous cAMP levels. The low adenylate cyclase activity and the abnormal morphology of frost may be related separately to the linolenate deficiency reported in the mutant.  相似文献   

8.
Guanosine 3':5'-monophosphate phosphodiesterases, which appear to be under allosteric control, have been partially purified from rat liver supernatant and particulate fractions. The preferred substrate for both phosphodiesterases was cGMP (Km values: cGMP less than cIMP less than cAMP). At subsaturating concentrations of substrate, the phosphodiesterases were stimulated by purine cyclic nucleotides. The order of effectiveness for activation of cyclic nucleotide hydrolysis was cGMP greater than cIMP greater than cAMP greater than cXMP. Using cAMP derivatives as activators of cIMP hydrolysis, modifications in the ribose, cyclic phosphate, and purine moieties were shown to alter the ability of the cyclic nucleotide to activate the supernatant enzyme. cGMP, at concentrations that stimulated cyclic nucleotide hydrolysis, enhanced chymotryptic inactivation of the supernatant phosphodiesterase. At similar concentrations, cAMP was not effective. It appears that on interaction with appropriate cyclic nucleotides, this phosphodiesterase undergoes conformational changes that are associated with increased catalytic activity and enhanced susceptibility to proteolytic attack. Divalent cation may not be required for the nucleotide-phosphodiesterase interaction and resultant change in conformation.  相似文献   

9.
M Takahashi  B Blazy  A Baudras 《Biochemistry》1980,19(22):5124-5130
The binding of adenosine cyclic 3',5'-monophosphate (cAMP) and guanosine cyclic 3',5'-monophosphate (cGMP) to the adenosine cyclic 3',5'-monophosphate receptor protein (CRP) from Escherichia coli was investigated by equilibrium dialysis at pH 8.0 and 20 degrees C at different ionic strengths (0.05--0.60 M). Both cAMP and cGMP bind to CRP with a negative cooperativity that is progressively changed to positive as the ionic strength is increased. The binding data were analyzed with an interactive model for two identical sites and site/site interactions with the interaction free energy--RT ln alpha, and the intrinsic binding constant K and cooperativity parameter alpha were computed. Double-label experiments showed that cGMP is strictly competitive with cAMP, and its binding parameters K and alpha are not very different from that for cAMP. Since two binding sites exist for each of the cyclic nucleotides in dimeric CRP and no change in the quaternary structure of the protein is observed on binding the ligands, it is proposed that the cooperativity originates in ligand/ligand interactions. When bound to double-stranded deoxyribonucleic acid (dsDNA), CRP binds cAMP more efficiently, and the cooperativity is positive even in conditions of low ionic strength where it is negative for the free protein. By contrast, cGMP binding properties remained unperturbed in dsDNA-bound CRP. Neither the intrinsic binding constant K nor the cooperativity parameter alpha was found to be very sensitive to changes of pH between 6.0 and 8.0 at 0.2 M ionic strength and 20 degrees C. For these conditions, the intrinsic free energy and entropy of binding of cAMP are delta H degree = -1.7 kcal . mol-1 and delta S degree = 15.6 eu, respectively.  相似文献   

10.
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a wide variety of extracellular stimuli. These signals regulate many biological processes including cell proliferation, differentiation, migration, and apoptosis. Recently, significant progress has been achieved in the molecular basis underlying cyclic nucleotide regulation of cell proliferation. This review summarizes our knowledge of the signaling pathways regulated by cyclic nucleotides in arterial smooth muscle cells.  相似文献   

11.
The metabolic turnover in the isolated in vitro perfused and superfused rat skeletal muscle (musculus gracilis cranialis) was enhanced by increasing the medium flow rate under relaxed conditions. In a recent study we have measured the tissue concentrations of second messengers: cyclic adenosine 3'5'-monophosphate (cAMP), cyclic guanosine 3'5'-monophosphate (cGMP), and D-myo-inositol 1,4,5-trisphosphate (IP3) under similar experimental conditions to analyze their potential role in the described stimulation of metabolic rate by changes of perfusion flow rate. The tissue levels of the two second messengers' cAMP and cGMP were not significantly changed after increasing the perfusion flow rate and they probably have no transduction role in the induced alteration of skeletal muscle metabolism. However, the IP3 content was extremely reduced after increasing flow rate. This decrease in the tissue concentration of IP3 induced by increasing the flow rate indicates the possible role of IP3 in this signal transduction, leading to changes in the cellular metabolic pathways.  相似文献   

12.
C J Hubbard 《Life sciences》1983,33(17):1695-1702
The temporal relationship of changes in cAMP and cGMP to oocyte maturation was examined in proestrous hamsters (day 4). The first series of experiments showed, in normal cycling hamsters, an increase in cAMP and a decrease in cGMP at 1400 h shortly after the rise in LH with oocyte maturation beginning at 1800 h. When a second group of animals was injected with phenobarbital at 1200 h to block the LH surge, no significant change occurred in either cyclic nucleotide and oocyte maturation was prevented. In the second series of experiments single injections of either saline, hCG (30 IU), LH (10 micrograms) or FSH (10 micrograms) were given each to a group of animals at 0900 h on day 4. Animals were killed at five time intervals between 15 min and 3 h following the injection. LH and hCG stimulated a simultaneous increase in cAMP and decline in cGMP. The injection of FSH, however, did not cause an increase in cAMP but still produced a sharp decline in cGMP. Oocyte maturation occurred at 3 h in those animals injected with gonadotropins. Animals injected with saline showed neither cyclic nucleotide changes nor oocyte maturation. When cAMP and cGMP levels were expressed as a ratio (cAMP/cGMP) a significant increase occurred in the normal cycling animals and in those injected at 0900 h with gonadotropins. Phenobarbital and saline injected control animals showed no significant increase in the cAMP/cGMP ratio and no oocyte maturation. The results of these experiments and previous studies by this investigator indicate that cGMP may play an important role in oocyte maturation in the hamster prior to the LH surge. Since, in the presence of gonadotropins, the cAMP/cGMP ratio increases prior to oocyte maturation, it may be that the cyclic nucleotide ratio is also of importance in this process. Previous work by Hubbard and Terranova (1) has shown that guanosine 3':5' cyclic monophosphate (cGMP), can inhibit spontaneous maturation of hamster oocytes in vitro. This inhibitory action was dose dependent and overcome by LH. The cGMP-mediated inhibition occurred only in cumulus-enclosed oocytes, while adenosine 3':5' cyclic monophosphate (cAMP) inhibited spontaneous maturation in both cumulus-enclosed and denuded oocytes. The results of this study suggested that cGMP may play a role in inhibiting oocyte maturation prior to the LH surge. LH, the initiator of oocyte maturation, has also been shown in the intact proestrous rat and hamster to cause a decrease in cGMP at the same time that cAMP is rising (2,3).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Exogenous cyclic nucleotide phosphodiesterase (PD) accelerated fruiting body (FB) formation and increased territory size of aggregates in Myxococcus xanthus. Both guanosine 3'5'-monophosphate (cGMP) and guanosine 5'-monophosphate (GMP) were antagonistic to the PD effect. Adenosine 3'5'-monophosphate (cAMP) increases FB numbers twofold in the absence but not in the presence of PD. PD induction is not affected by methionine or isoleucine, which inhibit, or by threonine, which stimulates, FB formation. There is an increase and subsequent decrease in cAMP levels during early glycerol-induced microcyst development but 10 mM theophylline or caffeine not only inhibited microcyst development but induced germination in the presence of glycerol. On the basis of these results and the reports of other investigators a tentative model is proposed based on a dual role for cyclic nucleotides in the development in M. xanthus.  相似文献   

14.
The binding of [3H]cGMP (guanosine 3',5'-monophosphate) to purified bovine adrenal cGMP-stimulated phosphodiesterase was measured by Millipore filtration on cellulose ester filter. [3H]cGMP-binding activity was enhanced when the assay was terminated in buffer containing 70% of saturated ammonium sulfate to dilute the enzyme and wash the filters. The cGMP-binding activity was co-purified with the phosphodiesterase activity. The binding of [3H]cGMP to purified enzyme was measured in the presence or absence of the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine. 1-Methyl-3-isobutylxanthine showed linear competitive inhibition with respect to cGMP as substrate in the phosphodiesterase reaction but stimulated the [3H]cGMP-binding activity in the binding assay. The stimulatory effect appeared not to be the result of preservation from [3H]cGMP hydrolysis; no cGMP phosphodiesterase activity has been measured under the cGMP-binding assay conditions, in the absence or presence of the inhibitor. Half-maximal stimulation by 1-methyl-3-isobutylxanthine occurred in the 5-7 microM concentration range. The specificity of binding of [3H]cGMP was investigated by adding increasing concentration of unlabeled analogs of cAMP (adenosine 3',5'-monophosphate) and cGMP. The binding of [3H]cGMP (50 nM) was displaced by unlabeled cGMP and cAMP with the following potency: 50% displacement was reached at the 0.1 microM cGMP range and only at a fiftyfold higher cAMP concentration. Our data with comparative series of analogs (e.g. 5'-amino-5'-deoxyguanosine 3',5'-monophosphate and 3'-amino-3'-deoxyguanosine 3',5'-monophosphate) showed that the potencies of stimulation of cAMP phosphodiesterase activity parallels displacement curves or [3H]cGMP binding to purified enzyme with no correlation with phosphodiesterase inhibition sequences. Those experiments suggest that the cGMP-binding activity is directly related to the non-catalytic (allosteric) cGMP-binding site.  相似文献   

15.
The effects of follicle-stimulating hormone (FSH) and cyclic guanosine 3',5'-monophosphate (cGMP) on spontaneous oocyte maturation and cyclic adenosine 3',5'-cumulus-monophosphate phosphodiesterase activity (cAMP-PDE) were evaluated by using cumulus-oocyte complexes (COCs) from proestrous hamsters. After a 2-h incubation period, FSH (10 micrograms/ml and 1 microgram/ml) reduced the percentage of maturing oocytes compared with controls. This inhibition was partially overcome when cGMP-elevating agents (8-Bromo-cGMP, atrial natriuretic factor or sodium nitroprusside) were included with FSH. After a 3-h period, incubation with FSH and cGMP-elevating agents alone increased the maturation rate above that of the controls. The accelerating effects of cGMP on the maturation rate appear to be caused by its capacity to lower cAMP levels. Combining FSH (1 microgram/ml) with sodium nitroprusside reduced cAMP levels in COCs (not oocytes) compared with groups exposed to FSH alone. FSH increased cGMP levels in COCs in a dose- and time-dependent manner. Both FSH and cGMP-elevating agents produced a dose-dependent increased cAMP-PDE activity in COCs (not oocytes) following a 2-h incubation period. Together, these results suggest that, in vivo, FSH stimulates a rise in both cAMP and cGMP in COCs. While the increase in cAMP may be the initial meiotic trigger, cGMP may serve to subsequently lower cAMP by activating cAMP-PDE and thus permit the maturational process to continue.  相似文献   

16.
Cyclic nucleotide dependent protein kinase has been extracted wiht Tris or Lubrol PX from purified rod outer segments (ROS) of bovine retina. The activity of the enzyme is unaffected by light but is stimulated by either cyclic guanosine 3',5'-monophosphate (cGMP) or cyclic adenosine 3',5'-monophosphate (cAMP). Most of the solubilized enzyme elutes from DEAE-cellulose with about 0.18 M NaCl (type II protein kinase). An endogenous 30,000 molecular weight protein of the soluble fraction of ROS as well as exogenous histone are phosphorylated by the protein kinase in a cyclic nucleotide dependent manner. The Tris-extracted enzyme can be reassociated in the presence of Mg2+ with ROS membranes that are depleted of protein kinase activity. The reassociated protein kinase is insensitive to exogenous cyclic nucleotides, and it catalyzes the phosphorylation of the membrane protein, bleached rhodopsin. While the soluble and membrane-associated protein kinases may be interchangeable, they appear to be modulated by different biological signals; soluble protein kinase activity is increased by cyclic nucleotides whereas membrane-bound activity is enhanced when rhodopsin is bleached by light.  相似文献   

17.
The intracellular concentration of cyclic adenosine 3':5'-mono-phosphate (cAMP) has been shown to be related to each developmental phase of the cell cycle. Highest levels of this nucleotide are evident during the S-phase (the DNA synthetic phase) which has also been shown to be radiation-sensitive. The relationship between the levels of cyclic nucleotides, cAMP and guanosine 3':5'-monophosphate (cGMP), and the proliferation of cells in a tumor model system was investigated using V79-171b Chinese hamster lung cells grown both as monolayer and as three dimensional cell clusters (spheroids). The spheroid which is more radiation-resistant than its monolayer counterpart, has been used by many radiobiologists as an in vitro tumor model. Our results indicate that the yin-yang hypothesis of a opposing regulatory relation between the two different classes of cyclic nucleotides only held true for monolayer cultures (both exponential and plateau phase) but could not be demonstrated in the tumor model where the levels of both nucleotides increased directly with the diameter of the growing spheroid mass.  相似文献   

18.
A study was made of the effect of ionizing radiation, phospholipase A2, and low concentrations of mediators (for instance, acetylcholine and gamma-aminobutyric acid) on the content of cyclic nucleotides and phosphorylation of membrane proteins of Helix pomatia nervous ganglia. Ionizing radiation was shown to decrease considerably the levels of cAMP and cGMP which correlated with the diminution of membrane phosphorylation. Phospholipase A2 and low doses of mediators produced a modifying effect on the cyclic nucleotide content.  相似文献   

19.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

20.
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine3',5'-monophosphate (cGMP) contents of cultured cells ofFrankiastrainsoriginally isolated from nodules ofAlnus sieboldiana, MyricarubraandElaeagnus macrophyllawere measured by enzyme immunoassays(EIA).Frankiacells, cultured for 59–121 d, had cAMP contentsranging from 2.9 to 76.1 pmol mg-1protein and cGMP contentsranging from 0.9 to 5.2 pmol mg-1protein. FollowingFrankiaculture,the media contained extremely large quantities of cAMP and significantlevels of cGMP. The nature of accumulation and secretion ofcyclic nucleotides by slow-growingFrankiacells was comparableto that by a fast-growing actinomyceteStreptomyces lividansTK24,suggesting that secretion of cAMP byFrankiacells may occur throughthe cell membrane but not by cell lysis. cAMP and cGMP contentsin the symbiotic nodules, leaves and roots of actinorrhizalplants and leaves of non-actinorrhizal trees were also measured.The nodules of actinorrhizal woody plants(A. sieboldiana, E.macrophylla, E. umbellata, E. pungensandM. rubra)had cAMP contentsranging from 4 to 258 pmol g-1f. wt and cGMP contents rangingfrom 1.1 to 5.2 pmol mg-1protein. Most leaves and some rootsof actinorrhizal plants and all the leaves of non-actinorrhizalwoody plants examined contained small but significant amountsof cAMP and cGMP. This is the first report of significant contentsof cAMP and cGMP in culturedFrankiacells andFrankia-infectednodules. Possible roles of cyclic nucleotides as symbiotic signalsare discussed.Copyright 1998 Annals of Botany Company cAMP, cGMP, actinorrhizal plants, nodules,Frankia,symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号