首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain of Helisoma duryi contains several neurodendocrinecentres. Factors) present in the cerebral ganglia are thoughtto be involved in normal shell growth while neurosecretory substancespresent in the visceral ganglion are involved in the repairof damaged shell. In Lymnaea stagnalis a growth hormone is producedby the cerebral ganglion which stimulates periostracum formationand the calcification of the inner shell layer. The second effectis thought to occur through the action of a mantle edge calciumbinding protein. In Helisoma, mantle collar is able to produce the periostracumin vitro. The presence of brain from a fast growing donor increasesthe amount of periostracum produced by a mantle collar froma slow growing animal. This effect is further enhanced by theremoval of the lateral lobes. The periostracum produced by fastgrowing animals has a higher glycine content than that producedby slow growing snails. The presence of dorsal epithelial tissueenhances the incorporation of calcium into periostracum formedin vitro. These findings suggest that a single factor is present in thebrain of fast growing Helisoma which modulates shell formationrates in vivo and periostracum formation in vitro.  相似文献   

2.
The bizarre watering pot shells of the clavagellid bivalve Brechites comprise a calcareous tube encrusted frequently with sand grains and other debris, the anterior end of which terminates in a convex perforated plate (the ‘watering pot’). It has not proved easy to understand how such extreme morphologies are produced. Previously published models have proposed that the tube and ‘watering pot’ are formed separately, outside the periostracum, and fuse later. Here we present the results of a detailed study of the structure and repair of the tubes of Brechites vaginiferus which suggest that these models are not correct. Critical observations include the fact that the external surface of the tube and ‘watering pot’ are covered by a thin organic film, on to the inner surface of which the highly organized aragonite crystals are secreted. There is no evidence of a suture between the tube and the ‘watering pot’ or that the periostracum of the juvenile shell passes through the wall of the tube. Live individuals of B. vaginiferus are able to repair substantial holes in the tube or ‘watering pot’ by laying down a new organic film followed by subsequent calcareous layers. Brechites vaginiferus displays Type C mantle fusion, with the result that the whole animal is encased by a continuous ring of mantle and periostracum, thereby making it possible to secrete a continuous ‘ring’ of shell material. On the basis of these observations we suggest that watering pot shells are not extra‐periostracal but are the product of simple modification of ‘normal’ shell‐secreting mechanisms.  相似文献   

3.
The cells of the mantle edge of Cerastoderma edule are described after light and electron microscopical observations. Histochemical tests for calcium in the mantle edge and digestive gland (Dahl, 1952; McGee-Russell, 1958) and analytical electron microscopy of the mantle edge of C. edule both failed to show calcium. Similar results were obtained for Mytilus edulis and Chlamys opercularis. However, calcium was detected in the digestive gland of the terrestrial gastropod Helix aspersa. The outer secretory fold of the mantle edge is composed of tall columnar cells. These cells have highly convoluted lateral cell membranes with which many mitochondria are closely associated. These features are indicative of an ion pump which could move calcium from the mantle space to the extrapallial cavity (compare with Bubel's findings, 1973b). There are many features of the cells lining the periostracal groove of C. edule that have not been reported previously (e.g. Bubel, 1973b) and which are now discussed. The periostracal sheet arises within a line of basal cells in the fundus of the periostracal groove. Within these cells the periostracum in section has a spiral form. It is suggested that the newly formed periostracum adheres to the microvillous border through secretions produced from the middle fold cells lining the groove. During its passage along the groove the periostracum is gradually thickened by secretions from the outer fold cells.  相似文献   

4.
Cell differentiation in the mantle edge of Notosaria, Thecidelhnaand Glottidia, representing respectively, the impunctate andpunctate calcareous articulate and chitinophosphatic inarticulatebrachiopods, is described. Comparison of electron micrographssuggests that outer epithelium which secretes periostracum andmineral shell, is separated from inner epithelium by a bandof "lobate" cells, of variable width, exuding an impersistentmucopolysaccharide film or pellicle. The lobate cells alwaysoccupy the same relative position on the inner surface of theouter mantle lobe; but the outer epithelium is commonly connectedwith the inner surface of the periostracum by papillae and protoplasmicstrands which persist during mineral deposition and ensure thatboth shell and attached mantle remain in situ relative to theoutwardly expanding inner surface of the outer mantle lobe.In the prototypic brachiopod, the lobate cells are likely atfirst to have occupied the hinge of the mantel fold but laterto have been displaced into their present position by the rigidoutward growing edge of the mineral shell.  相似文献   

5.
Polinices pulchellus held in the laboratory produced egg collars all year round. Egg collar production was greatest during July and August and only occurred in females >8-10 mm shell length. The largest individuals (14-16 mm shell length) had the highest fecundity and ceased egg-laying in late September, whilst 8-14 mm individuals laid egg collars until November. Small females (4-6 mm) grew rapidly during the warmer, summer months (April to August), became sexually mature and began laying egg collars in mid-September. Both the range of egg collar wet weights and the maximum wet weight of an individual egg collar increased with female size class. Temperature strongly affected the length of time between the laying of egg collars and the hatching of larvae (9-10 days at 19-20 °C and 14-15 days at 13-14 °C). A close relationship was also found between egg collar wet weight and the number of veliger larvae released.  相似文献   

6.
Using scanning electron and histological techniques on specimensof the bivalve Corbicula fluminea a new relationship betweenmantle, shell and periostracum has been observed, apparentlyfor the first time. Here we demonstrate that several extensionsof the mantle epithelium pierce the shell to join the innerlayer of the two-layered periostracum. The mantle extensionsare confirmed as unicellular processes. We suggest that theycould serve the animal in the mobilization of calcium from theshell for buffering the extrapalhal fluid under anaerobic conditions,when organic acids accumulate or when an extra contributionof Ca2+ is required (Received 5 January 1994; accepted 30 March 1994)  相似文献   

7.
Long-term, remote monitoring of animals under natural conditions is essential for obtaining information on animal activity. Advances in biotelemetry have led to the construction of low-power accelerometers placed on Global Positioning System (GPS) collars. Such acceleration data from roe deer have not yet been classified to the various behavioral categories. Here, we determined the threshold values of such data for different behavioral categories. We equipped captive roe deer with Global Positioning System–Global System for Mobile Communications/dual-axis acceleration sensor neck collars and simultaneously measured their movement and observed their behavior. The difference between feeding and slow locomotion was significant on the x- but not the y-axis, and both of these two behavioral categories differed significantly from resting and fast locomotion. Specific thresholds for the behavioral categories—resting, feeding, and slow and fast locomotion—were established by recursive partitioning. We compared the behavior determined by these threshold values with observed behavior and found that 92% of the behavioral categories were correctly assigned. A comparison of our results with those of earlier studies showed that thresholds derived for one species cannot be directly applied to another species. We provide recommendations for the further development of acceleration sensors based on the results obtained in this study.  相似文献   

8.
The fine structure of the shell and underlying mantle in young juveniles of the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The first shell produced by the mantle consists of a nonhinged protegulum that lacks concentric growth lines. The protegulum is secreted within a day after larval metamorphosis and typically measures 140-150 micron long. A thin organic periostracum constitutes the outer layer of the protegulum, and finely granular shell material occurs beneath the periostracum. Protegula resist digestion in sodium hypochlorite and are refractory to sectioning, suggesting that the subperiostracal portion of the primordial shell is mineralized. The juvenile shell at 4 days postmetamorphosis possesses incomplete sockets and rudimentary teeth that consist of nonfibrous material. The secondary layer occuring in the inner part of the juvenile shell contains imbricated fibers, whereas the outer portion of the shell comprises a bipartite periostracum and an underlying primary layer of nonfibrous shell. Deposition of the periostracum takes place within a slot that is situated between the so-called lobate and vesicular cells of the outer mantle lobe. Vesicular cells deposit the basal layer of the periostracum, while lobate cells contribute materials to the overlying periostracal superstructure. Cells with numerous tonofibrils and hemidesmosomes differentiate in the outer mantle epithelium at sites of muscle attachments, and unbranched punctae that surround mantle caeca develop throughout the subperiostracal portion of the shell. Three weeks after metamorphosis, the juvenile shell averages about 320 micron in length and is similar in ultrastructure to the shells secreted by adult articulates.  相似文献   

9.
Summary The mantle edge gland of Helisoma duryi is innervated by neurosecretory axons from the pallial nerves. Synaptoid contacts occur between axons and gland cells, and there is ultrastructural evidence for the release of neurosecretory material. The mantle edge gland contributes to the deposition of periostracum during shell formation, and direct neurosecretory innervation may control shell growth and regeneration.Supported by a National Research Council of Canada Grant (A-4673) and Negotiated Grant D-61  相似文献   

10.
Deposits composed of aragonite prisms, which were formed afterthe outer shell layer, have been found at the posterior steepslopes of divaricate ribs in two species of Strigilla and anothertwo of Solecurtus. These prisms have their axes oriented perpendicularto the outer shell surface and differ in morphology from fibresof the surface-parallel composite prisms forming the outer shell.They display crystalline features indicating that, unlike crystalsforming the outer shell surface, their growth front was free,unconstrained by the mantle or periostracum. These particulardeposits are called free-growing prisms (FGPs). In these generathe periostracum is clearly not the substrate for biomineralizationand, upon formation, does not adhere to the steep slope of ribs,but detaches at the rib peak and reattaches towards the posterior,just beyond the foot of the posterior scarps of ribs. In thisway, a sinus or open space developed between the internal surfaceof the periostracum and the outer shell surface along each steeprib slope. These spaces could remain filled with extrapallialfluid after the mantle advances beyond that point during shellsecretion. FGPs grow within this microenvironment, out of contactwith the mantle. Other species with divaricate ribs do not developFGPs simply because the periostracum adheres tightly to both ribslopes (which are never so steep as in Solecurtus and Strigilla).FGPs constitute one of the rare cases of remote biomineralizationin which aragonite is produced and direct contact with the mantlenever takes place. (Received 22 November 1999; accepted 20 February 2000)  相似文献   

11.
12.
Light microscopy, transmission electron microscopy, scanning electron microscopy, various histochemical procedures for the localization of mineral ions, and analytical electron microscopy have been used to investigate the mechanisms inherent at the mantle edge for shell formation and growth in Amblema plicata perplicata, Conrad. The multilayered periostracum, its component laminae formed from the epithelia lining either the periostracal groove or the outer mantle epithelium (of the periostracal cul de sac), appears to play the major regulatory and organizational role in the formation of the component mineralized layers of the shell. Thus, the inner layer of the periostracum traps and binds calcium and subsequently gives rise to matricial proteinaceous fibrils or lamellar extensions which serve as nucleation templates for the formation and orientation of the crystalline subunits (rhombs) in the forming nacreous layer. Simultaneously, the middle periostracal layer furnishes or provides the total ionic calcium pool and the matricial organization necessary for the production of the spherical subunits which pack the matricial ‘bags’ of the developing prismatic layer. The outer periostracal layer appears to be a supportive structure, possibly responsible for the mechanical deformations which occur in the other laminae of the periostracum. The functional differences in the various layers of the periostracum are related to peculiar morphological variables (foliations, vacuolizations, columns) inherent in the structure and course of this heterogeneous (morphologically and biochemically) unit. From this study, using the dynamic mantle edge as a morphological model system, we have been able to identify at least six interrelated events which culminate in the production of the mature mineralized shell layers (nacre, prisms) at the growing edge of this fresh-water mussel.  相似文献   

13.
Summary

The ultrastructure of early stages of the mussel, Hyriopsis (Limnoscapha) myersiana (Lea, 1856), was observed by scanning electron microscopy from the glochidial period until the onset of the juvenile stage 10 days later. Further observations were performed for an additional 13 days to assess juvenile development. Glochidia extracted from the brood chambers have a hookless, semi-oval and equivalve calcareous shell with numerous pores in the internal surface, pits in the external surface and cuticular spines in the ventral region. Keratin fibers with a random arrangement in the cuticle of the glochidial shell were also detected. The appearance of the foot within 10 days of in vitro glochidial culture was considered the main feature of metamorphosis to the juvenile stage. Another change during the following 13 days was the formation of a new periostracum exhibiting growth lines under the old glochidial shell. This development occurs mainly in the anterior region and is followed by hardening of the periostracum matrix by calcium deposition. Periostracum growth gradually became apparent in the lateral and posterior regions at the end of this period. The retraction of spines and the alteration of the external surface of the old shell are also described. It is speculated that transcuticular filaments identified in the juvenile stage may have sensory or metabolic exchange functions. The prominent foot, gradually covered by long dense cilia, shows rhythmical movements which suggest a role in feeding. Similarly, cilia present in the mantle may also be involved in the capture of food, while microvilli may facilitate absorption of dissolved materials. Longer cilia, sparsely distributed in the mantle, may function as chemo- or tactile sensors.  相似文献   

14.
ABSTRACT Global Positioning System (GPS) collars are increasingly being used to study fine-scale patterns of animal behavior. Previous studies on GPS collars have tried to determine the causes of location error without attempting to investigate whether the accuracy of fixes provides a correspondingly accurate measure of the animal's natural behavior. When comparing 2 types of GPS collar, we found a significant effect of collar weight and fit on the rate of travel of plains zebra (Equus burchelli antiquorum) females in the Makgadikgadi, Botswana. Although both types of collar were well within accepted norms of collar weight, the slightly heavier collars (0.6% of total body mass [TBM]) reduced rate of travel by >50% when foraging compared with the collar that was 0.4% of TBM. Collar effect was activity specific, particularly interfering with grazing behavior; the effect was less noticeable when zebras crossed larger interpatch distances. We highlight that small differences in collar weight or fit can affect specific behaviors, limiting the extrapolation of fine-scaled GPS data. This has important implications for wildlife biologists, who hitherto have assumed that collars within accepted weight limits have little or no effect on animal movement parameters.  相似文献   

15.
The only extant, preserved and complete specimen of Stirpulina ramosa has been discovered in the collections of the late Emperor Shōwa (Hirohito) and is described herein. Hitherto, only shells and the adventitious tubes of this species have been described. This study of the anatomy complements previous ones and adds further information as to how the adventitious tube is formed: that is, by the laying down of an organic, periostracum‐like, template that is then biomineralized internally to form the tube and is externally plastered with the clasts that constitute the enclosing burrow wall. Such secretions are produced by pallial lobes that unite on the right side to create the characteristic sutured pleat in this region of the tube. The periostracum enclosing the so‐interred animal is then secreted against the internal template of the tube. The shell of S. ramosa and, as a consequence, the musculature, is greatly disfigured as a result of the incorporation of the left valve into the fabric of the adventitious tube. This valve can, however, continue to grow within the tube, especially posteriorly. The right valve remains free inside the tube but grows only a little more anteriorly. The anterior mantle, with a minute pedal gape, is greatly thickened and secretes the watering pot component of the tube. In many anatomical respects, for example simultaneous hermaphroditism, S. ramosa still reflects the basic anomalodesmatan plan and such modifications as there are from the clavagellid form relate principally to the structure, formation and thus functioning of the adventitious tube. This study of S. ramosa has allowed the full spectrum of clavagellid adaptive radiation to be analysed and an evolutionary picture created which suggests that species of Clavagella/Dacosta and Stirpulina are Mesozoic (Late Cretaceous) remnants. Conversely, species of Bryopa and Dianadema are more modern, Late Oligocene and Palaeocene (Cenozoic), respectively, and possibly evolved in association with the emergence of the Indo‐West Pacific centre of coral diversity, with a postulated average age of just 30 Myr. © 2013 The Linnean Society of London  相似文献   

16.
Fast and slow growing Rhizobium spp. isolated from Cajanus cajan and Cicer arietinum were compared in terms of colony characteristics, utilisation of carbon sources, acid production, symbiotic effectiveness and nodulating competitiveness. Fast growing isolates from C. cajan and C. arietinum formed 3–6 mm diameter colonies on yeast-extract mannitol agar after 4 days and were unlike the slow growers which produced colonies of c. 1 mm diameter after 7–10 days at 28 °C. The fast growing Rhizobium spp. from C. cajan utilised a wider range of carbon sources than the slow growing isolates from this host. Fast and slow growing strains from C. arietinum were able to utilise most of the carbon sources tested suggesting that the slow growers possessed glycolytic pathways similar to those in other fast growing species of Rhizobium. In culture, slow growing isolates from C. cajan produced a near-neutral to alkaline reaction (pH 66·7-5) whereas the fast growers from this host and both fast and slow growing isolates from C. arietinum produced an acidic reaction (pH 4·4–5·6). These data are discussed in the context of Norris' (1965) evolutionary concept of the Leguminosae. Under glassshouse conditions, fast and slow growing strains isolated from C. cajan and C. arietinum were equally effective on their respective hosts. In competition with slow growing rhizobia, half of the fast growers formed more than 70% of the nodules on C. cajan grown in sand. In all but one instance similar results were obtained when plants were grown in soil. With C. arietinum grown in sand or soil, all fast growing isolates from this host formed more than 85% of the nodules in competition with slow growing strains.  相似文献   

17.
Summary The development of the pedicle in the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The posterior half of the free-swimming larva comprises a non-ciliated pedicle lobe that contains the primordium of the juvenile pedicle at its distal end. During settlement at five to six days post-fertilization, the pedicle lobe secretes a sticky sheet that attaches the larva to the substratum. As metamorphosis proceeds, the epithelium in the posterior half of the pedicle lobe produces a thin overlying cuticle, and the pedicle primordium develops into a stalk-like anchoring organ. The juvenile pedicle protrudes through the gape that occurs between the posterior margins of the shell valves. A cup-like canopy, called the pedicle capsule, lines the posterior end of the shell and surrounds the newly formed pedicle. The core of the juvenile pedicle is filled with a solid mass of connective tissue. Numerous tonofibrils occur in the pedicle epithelium, and the overlying cuticle consists of amorphous material covered by a thin granular fringe. By one year post-metamorphosis, a body cavity develops anterior to the pedicle. Two pairs of adjustor muscles extend from the posterior end of the shell and traverse the cavity to insert in the pedicle. The connective tissue core of the pedicle in sub-adult specimens lacks muscle cells but contains numerous fibroblasts and collagen fibers. Three regions are recognizable in the connective tissue compartment of the adult pedicle: a subepithelial layer of non-fibrous connective tissue, a central fibrous zone, and a proximal mass of tissue that resembles cartilage.List of abbreviations as adhesive sheet - bc body cavity - bv brachial valve of shell - cf collagen fibrils - ct connective tissue - cu cuticle - di diductor muscle - ec epithelial cell - f fibroblast - fz fibrous zone - g gut - gc granular cell - gd gastric diverticulum - ht hinge tooth - ia interarea of pedicle valve - icl inner cuticular layer - lo lophophore - lu lumen of gut - m mesenchyme - ma mantle - ml mantle lobe - ocl outer cuticular layer - p periostracum - pc pedicle capsule - pce pedicle capsule epithelium - pcl pedicle collar of shell - pcn pedicle connectives - pd pedicle - pe pedicle epithelium - pl pedicle lobe - pv pedicle valve of shell - pzc proximal zone of cartilage-like tissue - s substratum - sel subepithelial layer - t tendon - tf tonofibril - vam ventral adjustor muscle  相似文献   

18.
Abstract: Global Positioning System (GPS) telemetry is used extensively to study animal distribution and resource selection patterns but is susceptible to biases resulting from data omission and spatial inaccuracies. These data errors may cause misinterpretation of wildlife habitat selection or spatial use patterns. We used both stationary test collars and collared free-ranging American black bears (Ursus americanus) to quantify systemic data loss and location error of GPS telemetry in mountainous, old-growth temperate forests of Olympic National Park, Washington, USA. We developed predictive models of environmental factors that influence the probability of obtaining GPS locations and evaluated the ability of weighting factors derived from these models to mitigate data omission biases from collared bears. We also examined the effects of microhabitat on collar fix success rate and examined collar accuracy as related to elevation changes between successive fixes. The probability of collars successfully obtaining location fixes was positively associated with elevation and unobstructed satellite view and was negatively affected by the interaction of overstory canopy and satellite view. Test collars were 33% more successful at acquiring fixes than those on bears. Fix success rates of collared bears varied seasonally and diurnally. Application of weighting factors to individual collared bear fixes recouped only 6% of lost data and failed to reduce seasonal or diurnal variation in fix success, suggesting that variables not included in our model contributed to data loss. Test collars placed to mimic bear bedding sites received 16% fewer fixes than randomly placed collars, indicating that microhabitat selection may contribute to data loss for wildlife equipped with GPS collars. Horizontal collar errors of >800 m occurred when elevation changes between successive fixes were >400 m. We conclude that significant limitations remain in accounting for data loss and error inherent in using GPS telemetry in coniferous forest ecosystems and that, at present, resource selection patterns of large mammals derived from GPS telemetry should be interpreted cautiously.  相似文献   

19.
The squeezing hypothesis and the organic frameworks preformation hypothesis propose two different mechanisms to explain the interaction between organic frameworks and crystals during biomineralization of the prismatic layer of the mollusk shell. In this study, we began to study Hyriopsis cumingii shell formation and discover that this species seemed to follow the squeezing hypothesis. During the formation of the aragonite prismatic layer in the freshwater bivalve H. cumingii, we found that crystal growth was involved in controlling initiation of formation of the interprismatic organic membranes. First, newly formed crystals were embedded in the periostracum. Next, the interprismatic organic membranes of the prismatic layer were produced via squeezing between neighboring crystals. The organic matrix secreted by the mantle continuously self‐assembled into the interprismatic organic membranes as the crystals grew. In the mature stage, the interprismatic organic membranes were shaped by crystal growth. These findings provide evidence to support the squeezing hypothesis and add to the existing knowledge about interactions that occur at the organic–inorganic interfaces during mollusk shell biomineralization.  相似文献   

20.
The scanning electron microscope has been used to describe the surface morphology of the mantle in mantle-shell preparations from the fresh-water mussel Amblema. In some regions (adductor muscle insertions), the mantle is firmly attached to the shell. In other areas (along the main course of the mantle), transient adhesions between the outer mantle epithelial cells and the nacre appear to temporally further compartmentalize the extrapallial fluid possibly as a prerequisite for the initial crystallization phenomenon. At the mantle edge, as well as at the isthmus, the periostracum was seen to extrude from the periostracal groove. At the siphonal edge, peculiar fingerlike processes were identified; these may represent primitive photoreceptors. The epithelial cells of the outer mantle epithelium are all microvillated whereas those of the inner mantle epithelium are both microvillated and ciliated. Specific differences in surface morphology are described for various regions of the outer mantle epithelium. These may be related to precise regionalized functional differences of this tissue. Several functions of the mantle, in addition to shell formation, and based on its various morphologies, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号