首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cell biological activity of novel retinoids and rexinoids is described. The stereochemistry of the new compounds was analyzed and ligand docking experiments revealed the structural basis of their RAR binding characteristics. The new ligands activate nuclear retinoic acid receptors (RAR, RXR) with distinct selectivity patterns, as determined in genetically engineered 'reporter' cells. The biological activity of the novel retinoids was assessed by differentiation of NB4 acute promyelocytic leukemia cells.  相似文献   

3.
4.
Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.  相似文献   

5.
6.
7.
The promyelocytic leukemia-retinoic acid receptor α (PML/RARα) is hypothesized to play a vital role in the pathogenesis of acute promyelocytic leukemia (APL). A previous study has demonstrated that PML/RARα is cleaved by neutrophil elastase (NE) in early myeloid cells, which leads to an increase in the nuclear localization signal (NLS) in RARα and in the incidence of APL. In this study, we explored the effects of NLS-RARα on acute myeloid leukemia (AML) cells and studied the mechanism of its localization. LV-NLS-RARα recombinant lentivirus and negative control LV-NC lentivirus were transfected into HL-60 cells and U937 cells while mutant NLS-RARα were transfected into U937 cells, and all groups were treated with 1α, 25-dihydroxyvitamin D3(1,25D3). The results showed that NLS-RARα was located mainly in the nucleus while mutant NLS-RARα was located in the cytoplasm. Overexpression of NLS-RARα downregulated the expression of CD11b, CD11c, CD14, and three forms of CEBPβ compared to the overexpression of NC and mutant NLS-RARα. It was speculated that the abnormal localization of NLS-RARα was mediated via importin-α/β in the pathogenesis of APL. By producing point mutations in the two NLSs in NLS-RARα, we showed that the nuclear import of NLS-RARα was mainly dependent on the NLS of the RARα portion. Subsequently, we found that importin-α1 (KPNA2)/importin-β1 (KPNB1) participates in the nuclear transport of NLS-RARα. Taken together, abnormal localization of NLS-RARα blocks the differentiation of APL cells, and nuclear localization of NLS-RARα depends on NLS of the RARα portion and is mediated via binding with importin-α/β.  相似文献   

8.
Promyelocytic leukemia-retinoic acid receptor α (PML-RARα) is the most frequent RARα fusion protein in acute promyelocytic leukemia (APL). Our previous study has demonstrated that, compared with RARα, PML-RARα had reduced intranuclear mobility accompanied with mislocalization. To understand the molecular basis for the altered dynamics of PML-RARα fusion protein, we performed FRAP analysis at a single cell level. Results indicated that three known sumoylation site mutated PML-RARα had same intracellular localization and reduced mobility as wild-type counterpart. The coiled-coil domain of PML is responsible for the aberrant dynamics of PML-RARα. In addition, we revealed that co-repressor SMRT co-localized with PML-RARα, resulting in the immobilization of SMRT while ATRA treatment eliminated their association and reversed the immobile effect of SMRT. Furthermore, co-activator CBP, co-localized with PML-RARα in an ATRA-independent way, was demonstrated as a high dynamic intranuclear molecule. These results would shed new insights for the molecular mechanisms of PML-RARα-associated leukemogenesis.  相似文献   

9.
In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.  相似文献   

10.
11.
12.
13.
14.
15.
16.
The t(15;17) translocation, found in 95% of acute promyelocytic leukemia, encodes a promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARalpha) fusion protein. Complete remission of acute promyelocytic leukemia can be obtained by treating patients with all-trans retinoic acid, and PML-RARalpha plays a major role in mediating retinoic acid effects in leukemia cells. A main model proposed for acute promyelocytic leukemia is that PML-RARalpha exerts its oncogenic effects by repressing the expression of retinoic acid-inducible genes critical to myeloid differentiation. By applying subtraction cloning to acute promyelocytic leukemia cells, we identified a retinoic acid-induced gene, PRAM-1 (PML-RARalpha target gene encoding an Adaptor Molecule-1), which encodes a novel adaptor protein sharing structural homologies with the SLAP-130/fyb adaptor. PRAM-1 is expressed and regulated during normal human myelopoiesis. In U937 myeloid precursor cells, PRAM-1 expression is inhibited by expression of PML-RARalpha in the absence of ligand and de novo superinduced by retinoic acid. PRAM-1 associates with other adaptors, SLP-76 and SKAP-55HOM, in myeloid cell lines and with protein tyrosine kinase lyn. By providing the first evidence that PML-RARalpha dysregulates expression of an adaptor protein, our data open new insights into signaling events that are disrupted during transformation by PML-RARalpha and induced by retinoic acid during de novo differentiation of acute promyelocytic leukemia cells.  相似文献   

17.
18.
Acute promyelocytic leukemia (APL) results from a reciprocal translocation that fuses the gene for the PML tumor suppressor to that encoding the retinoic acid receptor alpha (RARα). The resulting PML-RARα oncogene product interferes with multiple regulatory pathways associated with myeloid differentiation, including normal PML and RARα functions. The standard treatment for APL includes anthracycline-based chemotherapeutic agents plus the RARα agonist all-trans retinoic acid (ATRA). Relapse, which is often accompanied by ATRA resistance, occurs in an appreciable frequency of treated patients. One potential mechanism suggested by model experiments featuring the selection of ATRA-resistant APL cell lines involves ATRA-resistant versions of the PML-RARα oncogene, where the relevant mutations localize to the RARα ligand-binding domain (LBD). Such mutations may act by compromising agonist binding, but other mechanisms are possible. Here, we studied the molecular consequence of ATRA resistance by use of circular dichroism, protease resistance, and fluorescence anisotropy assays employing peptides derived from the NCOR nuclear corepressor and the ACTR nuclear coactivator. The consequences of the mutations on global structure and cofactor interaction functions were assessed quantitatively, providing insights into the basis of agonist resistance. Attenuated cofactor switching and increased protease resistance represent features of the LBDs of ATRA-resistant PML-RARα, and these properties may be recapitulated in the full-length oncoproteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号