首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intronic point mutation was identified in the E1alpha PDH gene from a boy with delayed development and lactic acidosis, an X-linked disorder associated with a partial defect in pyruvate dehydrogenase (PDH) activity. Protein analysis demonstrated a corresponding decrease in immunoreactivity of the alpha and beta subunits of the PDH complex. In addition to the normal spliced mRNA product of the E1alpha PDH gene, patient samples contained significant levels of an aberrantly spliced mRNA with the first 45 nucleotides of intron 7 inserted in-frame between exons 7 and 8. The genomic DNA analysis found no mutation in the coding regions but revealed a hemizygous intronic G to A substitution 26 nucleotides downstream from the normal exon 7 5'-splice site. Splicing experiments in COS-7 cells demonstrated that this point mutation at intron 7 position 26 is responsible for the aberrant splicing phenotype, which involves a switch from the use of the normal 5'-splice site (intron 7 position 1) to the cryptic 5'-splice site downstream of the mutation (intron 7 position 45). The intronic mutation is unusual in that it generates a consensus binding motif for the splicing factor, SC35, which normally binds to exonic enhancer elements resulting in increased exon inclusion. Thus, the aberrant splicing phenotype is most likely explained by the generation of a de novo splicing enhancer motif, which activates the downstream cryptic 5'-splice site. The mutation documented here is a novel case of intron retention responsible for a human genetic disease.  相似文献   

2.
Two distinct types of cDNA clones encoding for the pyruvate dehydrogenase (PDH) E1 beta subunit were isolated from a human liver lambda gt11 cDNA library and characterized. These cDNA clones have identical nucleotide sequences for PDH E1 beta protein coding region but differ in their lengths and in the sequences of their 3'-untranslated regions. The smaller cDNA had an unusual polyadenylation signal within its protein coding region. The cDNA-deduced protein of PDH E1 beta subunit revealed a precursor protein of 359 amino acid residues (Mr 39,223) and a mature protein of 329 residues (Mr 35,894), respectively. Both cDNAs shared high amino acid sequence similarity with that isolated from human foreskin (Koike, K.K., Ohta, S., Urata, Y., Kagawa, Y., and Koike, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 41-45) except for three regions of frameshift mutation. These changes led to dramatic alterations in the local net charges and predicted protein conformation. One of the different sequences in the protein coding region of liver cDNA (nucleotide position 452-752) reported here was confirmed by sequencing the region after amplification of cDNA prepared from human skin fibroblasts by the polymerase chain reaction. Southern blot analysis verified simple patterns of hybridization with E1 beta cDNA, indicating that the PDH E1 beta subunit gene is not a member of a multigene family. The mechanisms of differential expression of the PDH E1 alpha and E1 beta subunits were also studied in established fibroblast cell lines obtained from patients with Leigh's syndrome and other forms of congenital lactic acidosis. In Northern blot analyses for PDH E1 alpha and E1 beta subunits, no apparent differences were observed between two Leigh's syndrome and the control fibroblasts studied: one species of PDH E1 alpha mRNA and three species of E1 beta mRNA were observed in all the cell lines examined. However, in one tricarboxylic acid cycle deficient fibroblast cell line, which has one-tenth of the normal enzyme activity, the levels of immunoreactive PDH E1 alpha and E1 beta subunits were markedly decreased as assessed by immunoblot analyses. These data indicated a regulatory mutation caused by either inefficient translation of E1 alpha and E1 beta mRNAs into protein or rapid degradation of both subunits upon translation. In contrast, the PDH E1 alpha and E1 beta subunits in two fibroblast cell lines from Leigh's syndrome patients appeared to be normal as judged by 1) enzyme activity, 2) mRNA Northern blot, 3) genomic DNA Southern blot, and 4) immunoblot analyses indicating that the lactic acidosis seen in these patients did not result from a single defect in either of these E1 alpha and E1 beta subunits of the PDH complex.  相似文献   

3.
Deficiency of the E1 alpha-subunit of the pyruvate dehydrogenase (PDH) complex is an X-linked inborn error of metabolism and one of the major causes of lactic acidosis in children. Although most heterozygous females manifest symptoms of the disease, it is often difficult to establish the diagnosis as results based on measurement of total PDH activity, and E1 alpha-immunoreactive protein in patient fibroblasts may be ambiguous because of the variability in the pattern of X chromosome inactivation. We report the development of a set of monoclonal antibodies (MAbs) specific to four subunits of the PDH complex that can be used for detection of PDH E1 alpha deficiency. We also show that anti-E1 alpha and anti-E2 MAbs, when used in immunocytochemical analysis, can detect mosaicism in cell cultures from female patients in which as few as 2-5% of cells express the deficiency. This immunocytochemical approach, which is fast, reliable, and quantitative, will be particularly useful in identifying females with PDH E1 alpha-subunit deficiency as a precursor to mutation analysis.  相似文献   

4.
5.
A naturally arising point mutation in the env gene of HIV-1 activates the aberrant inclusion of the cryptic exon 6D into most viral messages, leading to inefficient viral replication. We set out to understand how a single nucleotide substitution could cause such a dramatic change in splicing. We have determined that the exon 6D mutation promotes binding of the SR protein SC35 to the exon. Mutant exon 6D sequences function as a splicing enhancer when inserted into an enhancer-dependent splicing construct. hnRNP H family proteins bind to the enhancer as well; their binding is dependent on the sequence GGGA located just downstream of the point mutation and depletion-- reconstitution studies show that hnRNP H is essential for enhancer activity. A polypurine sequence located further downstream in exon 6D binds SR proteins but acts as an exonic splicing silencer. hnRNP H is required for interaction of U1 snRNP with the enhancer, independent of the point mutation. We propose that SC35 binding to the point mutation region may convert the hnRNP H-U1 snRNP complex into a splicing enhancer.  相似文献   

6.
7.
In this work we report the identification of a strong SF2/ASF binding site within exon 7 of the human fibrinogen Bbeta-chain gene (FGB). Its disruption in the wild-type context has no effect on exon recognition. However, when the mutation IVS7 + 1G>T--initially described in a patient suffering from congenital afibrinogenemia--is present, this SF2/ASF binding site is critical for cryptic 5'ss (splice site) definition. These findings, besides confirming and extending previous results regarding the effect of SF2/ASF on cryptic splice site activation, identify for the first time an enhancer sequence in the FGB gene specific for cryptic splice site usage. Taken together, they suggest the existence of a splicing-regulatory network that is normally silent in the FGB natural splicing environment but which can nonetheless influence splicing decisions when local contexts allow. On a more general note, our conclusions have implications for the evolution of alternative splicing processes and for the development of methods to control aberrant splicing in the context of disease-causing mutations.  相似文献   

8.
Hemophilia A, an X-linked disease caused by deficiency of factor VIII, is characterized by variation in clinical severity and coagulation activity. This variation is though to reflect heterogeneity of mutations in the factor VIII gene. Here we describe a CG-to-CA mutation within a potential cryptic donor splice site in intron 4 of the factor VIII gene from a patient with mild disease. This mutation makes the cryptic sequence resemble more closely the consensus sequence for donor splice sites. We infer that the mutation activates the cryptic donor splice site, which in turn causes a defect in RNA processing.  相似文献   

9.
Vitamin A metabolite, all-trans-retinoic acid (RA), induces cell growth, differentiation, and apoptosis and has an emerging role in gene regulation and alternative splicing events. Protein kinase Cδ (PKCδ), a serine/threonine kinase, has a role in cell proliferation, differentiation, and apoptosis. We reported an alternatively spliced variant of human PKCδ, PKCδVIII that functions as a pro-survival protein (1). RA regulates the splicing and expression of PKCδVIII via utilization of a downstream 5′ splice site of exon 10 on PKCδ pre-mRNA. Here, we further elucidate the molecular mechanisms involved in RA regulation of alternative splicing of PKCδVIII mRNA. Overexpression and knockdown of the splicing factor SC35 (i.e. SRp30b) indicated that it is involved in PKCδVIII alternative splicing. To identify the cis-elements involved in 5′ splice site selection we cloned a minigene, which included PKCδ exon 10 and its flanking introns in the pSPL3 splicing vector. Alternative 5′ splice site utilization in the minigene was promoted by RA. Further, co-transfection of SC35 with PKCδ minigene promoted selection of 5′ splice site II. Mutation of the SC35 binding site in the PKCδ minigene abolished RA-mediated utilization of 5′ splice splice II. RNA binding assays demonstrated that the enhancer element downstream of PKCδ exon 10 is a SC35 cis-element. We conclude that SC35 is pivotal in RA-mediated PKCδ pre-mRNA alternative splicing. This study demonstrates how a nutrient, vitamin A, via its metabolite RA, regulates alternative splicing and thereby gene expression of the pro-survival protein PKCδVIII.  相似文献   

10.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

11.
12.
Brown RM  Head RA  Brown GK 《Human genetics》2002,110(2):187-191
Primary defects of the E3 binding protein component of the pyruvate dehydrogenase complex appear to be a rare cause of pyruvate dehydrogenase deficiency. We describe two new, unrelated patients with mutations in the E3 binding protein gene, in both cases involving the conserved dinucleotides of splice junctions. Both patients presented with delayed development and lactic acidosis, features that are also found in patients with the more common pyruvate dehydrogenase E1 alpha subunit deficiency; however, they both had significant residual enzyme activity in cultured fibroblasts and prolonged survival.  相似文献   

13.
In a patient with a beta-thalassemia intermedia, a mutation was identified in the second intron of the human beta-globin gene. The U-->G mutation is located within the polypyrimidine tract at position -8 upstream of the 3' splice site. In vivo, this mutation leads to decreased levels of the hemoglobin protein. Because of the location of the mutation and the role of the polypyrimidine tract in the splicing process, we performed in vitro splicing assays on the pre-messenger RNA (pre-mRNA). We found that the splicing efficiency of the mutant pre-mRNA is reduced compared to the wild type and that no cryptic splice sites are activated. Analysis of splicing complex formation shows that the U-->G mutation affects predominantly the progression of the H complex towards the pre-spliceosome complex. By cross-linking and immunoprecipitation assays, we show that the hnRNP C protein interacts more efficiently with the mutant precursor than with the wild-type. This stronger interaction could play a role, directly or indirectly, in the decreased splicing efficiency.  相似文献   

14.
Hypomorphic mutation in hnRNP U results in post-implantation lethality   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
Identical G+1 mutations in three different introns of the gene for type III procollagen (COL3A1) that cause aberrant splicing of RNA were found in three probands with life-threatening variants of Ehlers-Danlos syndrome. Because the three mutations were in a gene with multiple and homologous exons, they provided an interesting test for factors that influence aberrant splicing. The G+1 to A mutation in intron 16 caused extensive exon skipping, the G+1 to A mutation in intron 20 caused both use of a cryptic splice site and retention of all the intron sequences, and the G+1 to A mutation in intron 42 caused efficient use of a single cryptic splice site. The different patterns of RNA splicing were not explained by evaluation of potential cryptic splice sites in the introns by either their homology with 5'-splice sites from other genes or by their delta G(0)37 values for binding to U1 RNA. Instead, the results suggested that the patterns of aberrant RNA splicing were primarily determined by the relative rates at which adjacent introns were normally spliced.  相似文献   

17.
18.
19.
The X-linked form of Alport syndrome is caused by mutations in the COL4A5 gene in Xq22. This large multiexonic gene has, in the past, been difficult to screen, with several studies detecting only about 50% of mutations. We report three novel intronic mutations that may, in part, explain this poor success rate and demonstrate that single base changes deep within introns can, and do, cause disease: one mutation creates a new donor splice site within an intron resulting in the inclusion of a novel in-frame cryptic exon; a second mutation results in a new exon splice enhancer sequence (ESE) that promotes splicing of a cryptic exon containing a stop codon; a third patient exhibits exon skipping as a result of a base substitution within the polypyrimidine tract that precedes the acceptor splice site. All three cases would have been missed using an exon-by-exon DNA screening approach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号