首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies investigating the demographic traits that drive the patterns of phase dominance (the ploidy ratio) in isomorphic biphasic life cycles have not found an integrative solution. Either fertility or survival has been suggested independently as the main driver. Here, we provide a global theoretical framework on how demographic mechanisms determine the ploidy ratio, unifying previous numerical and observational attempts at this question. The analytical solutions of both the ploidy ratio and its elasticities to model parameters of a stage/size‐structured model patterned after the life cycle of a marine alga were derived and analyzed. A complex interaction among vital rates determines the patterns of phase dominance of biphasic life cycles. Three co‐occurring processes—growth, fertility, and looping—may dominate the dynamics of the population, determining both its growth rate and ploidy ratio. Our analyses show that in species where fertility is low, the ploidy ratio is highly elastic to looping transitions (survival, breakage, and clonal growth). Consequently, the subtle morphological, ecophysiological, and biochemistry phase differences that have been reported in isomorphic life cycles as not explaining the observed ploidy ratios, may, in fact, explain them if they translate into slight phase differences in looping transitions. In species where fertility is low, the looping dissimilarities between phases cannot be too high favoring simultaneously one phase, as the population structure would be completely dominated by that phase. In the case of ecological similarity between phases (equal looping and growth rates between phases), a ploidy ratio different from one can only be set by strong phase differences in fertility.  相似文献   

2.
The relative abundance of haploid and diploid individuals (H:D) in isomorphic marine algal biphasic cycles varies spatially, but only if vital rates of haploid and diploid phases vary differently with environmental conditions (i.e. conditional differentiation between phases). Vital rates of isomorphic phases in particular environments may be determined by subtle morphological or physiological differences. Herein, we test numerically how geographic variability in H:D is regulated by conditional differentiation between isomorphic life phases and the type of life strategy of populations (i.e. life cycles dominated by reproduction, survival or growth). Simulation conditions were selected using available data on H:D spatial variability in seaweeds. Conditional differentiation between ploidy phases had a small effect on the H:D variability for species with life strategies that invest either in fertility or in growth. Conversely, species with life strategies that invest mainly in survival, exhibited high variability in H:D through a conditional differentiation in stasis (the probability of staying in the same size class), breakage (the probability of changing to a smaller size class) or growth (the probability of changing to a bigger size class). These results were consistent with observed geographic variability in H:D of natural marine algae populations.  相似文献   

3.
Understanding actual and potential selection on traits of invasive species requires an assessment of the sources of variation in demographic rates. While some of this variation is assignable to environmental, biotic or historical factors, unexplained demographic variation also may play an important role. Even when sites and populations are chosen as replicates, the residual variation in demographic rates can lead to unexplained divergence of asymptotic and transient population dynamics. This kind of divergence could be important for understanding long- and short- term differences among populations of invasive species, but little is known about it. We investigated the demography of a small invasive tree Psidium cattleianum Sabine in the rainforest of Hawaiʻi at four sites chosen for their ecological similarity. Specifically, we parameterized and analyzed integral projection models (IPM) to investigate projected variability among replicate populations in: (1) total population size and annual per capita population growth rate during the transient and asymptotic periods; (2) population structure initially and asymptotically; (3) three key parameters that characterize transient dynamics (the weighted distance of the structure at each time step from the asymptotic structure, the strength of the sub-dominant relative to the dominant dynamics, and inherent cyclicity in the subdominant); and (4) proportional sensitivity (elasticity) of population growth rates (both asymptotic and transient) to perturbations of various components of the life cycle. We found substantial variability among replicate populations in all these aspects of the dynamics. We discuss potential consequences of variability across ecologically similar sites for management and evolutionary ecology in the exotic range of invasive species.  相似文献   

4.
For species in disturbance-prone ecosystems, vital rates (survival, growth and reproduction) often vary both between and within phases of the cycle of disturbance and recovery; some of this variation is imposed by the environment, but some may represent adaptation of the life history to disturbance. Anthropogenic changes may amplify or impede these patterns of variation, and may have positive or negative effects on population growth. Using stochastic population projection matrix models, we develop stochastic elasticities (proportional derivatives of the long-run population growth rate) to gauge the population effects of three types of change in demographic variability (changes in within- and between-disturbance-phase variability and phase-specific changes). Computing these elasticities for five species of disturbance-influenced perennial plants, we pinpoint demographic rates that may reveal adaptation to disturbance, and we demonstrate that species may differ in their responses to different types of changes in demographic variability driven by climate change.  相似文献   

5.
The seasonal dynamics of the activity and the demographic structure of Calathus melanocephalus and C. micropterus populations were studied in the northern taiga of Arkhangelsk Province. The period of adult activity lasts from early June to mid-or late September with the maximum surface activity observed in the middle of summer. In C. melanocephalus, mature individuals are recorded from early June to early September, and in C. micropterus, during the entire season. The data on seasonal changes of the demographic structure of the population demonstrate that in the northern taiga, these species probably possess a biennial life cycle with summer reproduction. The geographical variability of the demographic structure of populations and of life cycles of two species of the genus Calathus was demonstrated. Northwards from the south, the period of activity decreases and the period of reproduction increases and shifts from autumn to the middle of summer. A hypothesis was formulated, according to which in the species studied the annual life cycle in the central part of the range is replaced by the biennial cycle in the north.  相似文献   

6.
? Premise of the study: Current environmental changes may affect the dynamics and viability of plant populations. This environmental sensitivity may differ between species of different ploidy level because polyploidization can influence life history traits. We compared the demography and climatic sensitivity of two closely related ferns: the tetraploid Polystichum aculeatum and one of its diploid parents, Polystichum setiferum. ? Methods: Matrix models were used to assess the effects of life history variation on population dynamics under varying winter conditions. We analyzed the contributions of all key aspects of the fern life cycle to population growth. Our study is the first to also include the gametophyte generation. ? Key results: Projected population growth rate (λ) was much higher for the tetraploid P. aculeatum (1.516) than for P. setiferum (1.071) under normal winter conditions. During a year with harsh winter conditions, population growth of P. aculeatum was strongly reduced. This finding contradicts our expectation that the winter-hardy fronds of this species would allow high survival of harsh winters. Differences in λ between species and between years with different winter conditions were mostly caused by variation in gametophyte-related recruitment rates, a finding that shows the importance of including gametophytes in fern demographic studies. ? Conclusions: Our results indicate that populations of closely related ferns can show large differences in population performance, mainly related to recruitment rates and frond phenology, and that these differences may depend greatly on climatic conditions. Our findings provide a first indication that (allo)polyploidization in ferns can have a significant effect on population dynamics.  相似文献   

7.
1. Survival rates and natalities for a population of snowshoe hares in the Yukon were estimated independently of and simultaneously with estimates of population change during the increase phase of a hare cycle.
2. Simple demographic models are used to show that even though the estimated survival rates and natalities were high relative to previously published estimates, the observed demographic parameters are unable to explain the extent of population increase, and we conclude that some of these parameters must be underestimates.
3. A sensitivity analysis is used to examine the potential influence of changes in these demographic parameters on the population growth rate. During most years of the hare cycle the population growth rate is potentially most sensitive to changes in juvenile postweaning survival. Only during crash years is adult survivorship likely to be a more important determinant of the rate of population change.
4. Examination of previously published data sets on two full population cycles suggests that while survival rates are positively correlated with population growth rates, their incorporation into demographic models results in frequent underestimation of the rate of population increase.  相似文献   

8.
Nomadic pastoral populations appear to have much lower rates of growth than the otherwise very high growth rates now characteristic of populations in developing nations. Because dramatic declines in infant mortality have been a primary contributor to increased population growth rates in these countries, it has been assumed that nomadic pastoral populations are still characterized by high levels of mortality in the first few years of life. Few studies, however, have been undertaken to estimate demographic parameters for nomadic pastoral populations, and even fewer of a comparative nature have been undertaken to document the impact of subsistence strategy on demographic processes. This study compares indirect childhood mortality estimates for Turkana nomadic pastoralists with childhood mortality in a settled agricultural group within the same population and finds that pastoralists have substantially higher levels of mortality. Based on the childhood mortality estimates, model life tables are selected for pastoral and agricultural groups from which values for mean life expectancy and infant mortality are estimated and compared. Recent improvements in primary health care for the settled agricultural group are ruled out as being an important cause of their lower mortality levels, and some aspects of life-style associated with subsistence strategy are discussed as likely determinants of the mortality differences.  相似文献   

9.
BACKGROUND AND AIMS: Despite the recent enormous increase in the number of studies on polyploid species, no studies to date have explored the population dynamics of these taxa. It is thus not known whether the commonly reported differences in single life-history traits between taxa of different ploidy levels result in differences in population dynamics. METHODS: This study explores differences in single life-history traits and in the complete life cycle between populations of different ploidy levels and compares these differences with differences observed between different habitat types and years. Diploid and hexaploid populations of a perennial herb, Aster amellus, are used as the study system. Transition matrix models were used to describe the dynamics of the populations, and population growth rates, elasticity values and life-table response experiments were used to compare the dynamics between populations and years. KEY RESULTS: The results indicate that between-year variation in population dynamics is much larger than variation between different ploidy levels and different habitat conditions. Significant differences exist, however, in the structure of the transition matrices, indicating that the dynamics of the different ploidy levels are different. Strong differences in probability of extinction of local populations were also found, with hexaploid populations having higher probability than diploid populations, indicating strong potential differences in persistence of these populations. CONCLUSIONS: This is the first study on complete population dynamics of plants of different ploidy levels. This knowledge will help to understand the ability of new ploidy levels to spread into new areas and persist there, and the interactions of different ploidy levels in secondary contact zones. This knowledge will also contribute to understanding of interactions of different ploidy levels with other plant species or other interacting organisms such as pollinators or herbivores.  相似文献   

10.
Sargassum muticum (Yendo) Fensholt is an introduced brown seaweed with a very distinctive seasonal growth cycle on European shores. The present study links the dynamics of a population of S. muticum with the seasonal growth cycle of the species and the density-dependent processes operating throughout this cycle. Results indicate that both growth cycle and intraspecific competition influenced the structure and population dynamics. Size inequality increased during the slow growth phase (autumn–winter) of the 2-year study. Mechanisms generating inequality of size could be the existence of asymmetric competition and the inherent differences in growth rates between old (regenerated) and new thalli (recruits). Inequality of size distributions decreased progressively during the last months of the growth phase (spring–summer) and could be related to a process of self-thinning. There was a negative biomass–density relationship (as a measure of biomass accumulation-driven mortality) that confirms the importance of self-thinning as a major demographic factor in the S. muticum population.  相似文献   

11.
Here we present, to the authors' knowledge for the very first time for a small marsupial, a thorough analysis of the demography and population dynamics of the mouse opossum (Thylamys elegans) in western South America. We test the relative importance of feedback structure and climatic factors (rainfall and the Southern Oscillation Index) in explaining the temporal variation in the demography of the mouse opossum. The demographic information was incorporated into a stage-structured population dynamics model and the model's predictions were compared with observed patterns. The mouse opossum's capture rates showed seasonal (within-year) and between-year variability, with individuals having higher capture rates during late summer and autumn and lower capture rates during winter and spring. There was also a strong between-year effect on capture probabilities. The reproductive (the fraction of reproductively active individuals) and recruitment rates showed a clear seasonal and a between-year pattern of variation with the peak of reproductive activity occuring during winter and early spring. In addition, the fraction of reproductive individuals was positively related to annual rainfall, while population density and annual rainfall positively influenced the recruitment rate. The survival rates were negatively related to annual rainfall. The average finite population growth rate during the study period was estimated to be 1.011 +/- 0.0019 from capture-recapture estimates. While the annual growth rate estimated from the seasonal linear matrix models was 1.026, the subadult and adult survival and maturation rates represent between 54% (winter) and 81% (summer) of the impact on the annual growth rate.  相似文献   

12.
Satu Ramula  Yvonne M. Buckley 《Oikos》2009,118(8):1164-1173
Negative density dependence resulting from intraspecific competition can regulate plant populations by limiting demographic rates (survival, growth, fecundity). However, the strength of intraspecific competition can vary within and among populations due to spatial or temporal environmental heterogeneity, or genetic differences. Quantification of variation under a relatively constant environment is needed to assess the inherent potential for density dependence to vary. This knowledge will help adjust data collection effort required for parameterisation of density dependence. Our review of published plant demographic studies revealed that only half of the studies included the whole life‐cycle in the analysis of density dependence. Approximately half of the studies manipulated density, while the rest examined density dependence from observed densities in the field. Regardless of the design used, density dependence was estimated from a small number of replicates. To investigate inherent variation in density dependence during the life‐cycle, and the effect of low replication on density dependence estimates, we combined an experimental approach with simulations for an invasive herb Senecio madagascariensis. We found significant negative density dependence for five out of six examined demographic rates in a constant environment, with the strength of density dependence increasing during the life‐cycle. An exception was plant growth, in which the direction of density dependence varied from positive to negative depending on the life stage. Simulations showed substantial deviation for density dependence parameterised from a small number of replicates even when environmental variation was minimal. This suggests that data collection procedures currently used to assess the effect of density on plant demographic rates may produce inaccurate estimates, increasing uncertainty in demographic models. Due to variation in the direction and strength of density dependence during the life‐cycle, multiple life stages with multiple replicated density levels are required to parameterise density dependence for demographic rates.  相似文献   

13.
Armadillidium pelagicum Arcangeli, 1955 is a terrestrial isopod endemic to the circum-Sicilian islands and the North of Tunisia. The life cycle and the population structure of this species were studied on a natural population at Aouina, in the surroundings of Tunis, over 16 months from, January 2000 to April 2001, by monthly or semi-monthly samplings. The ovigerous females were present from March/April to the end of August and absent from September to February/March. These observations indicate that A. pelagicum at Aouina has a seasonal reproduction, followed by a sexual rest. The recruitment period is spread from April/May to mid-September. The fecundity, estimated by the number of eggs in the marsupium of ovigerous females, exhibited a great variability, which is related to the weight of these females. The sex ratio underwent fluctuations throughout the sampling period. It was female-biased in most samplings. Mass frequency distribution was analysed and nine cohorts were identified during the sampling period. The field growth rates are high in the first life phase, decrease during winter and increase during spring. The characteristics of the life cycle of A. pelagicum at Aouina may be summarized as follows: (i) Semi-annual species, since females appear to produce up to five broods per year, (ii) iteroparous females, since females seem to reproduce twice or more in life; (iii) bivoltine life cycle, since the population produces two generations per year; (iv) variability of cohorts' life span.  相似文献   

14.
Despite the importance of tropical birds in the development of life history theory, we lack information about demographic rates and drivers of population dynamics for most species. We used a 7‐year (2007–2013) capture‐mark‐recapture dataset from an exceptionally wet premontane forest at mid‐elevation in Costa Rica to estimate apparent survival for seven species of tropical passerines. For four of these species, we provide the first published demographic parameters. Recapture probabilities ranged from 0.21 to 0.53, and annual estimates of apparent survival varied from 0.23 to 1.00. We also assessed the consequences of inter‐annual variation in rainfall on demographic rates. Our results are consistent with inter‐annual rainfall increasing estimates of apparent survival for two species and decreasing estimates for three species. For the three species where we could compare our estimates of apparent survival to estimates from drier regions, our estimates were not consistently higher or lower than those published previously. The temporal and spatial variability in demographic rates we document within and among species highlights the difficulties of generalizing life history characteristics across broad biogeographic gradients. Most importantly, this work emphasizes the context‐specific role of precipitation in shaping tropical avian demographic rates and underscores the need for mechanistic studies of environmental drivers of tropical life histories.  相似文献   

15.
The route to extinction in variable environments   总被引:3,自引:0,他引:3  
Estimating the extinction risk of natural populations is not only an urgent problem in conservation biology but also involves some profound aspects of population dynamics. Apart from the obvious case of a continuous decrease in a population's carrying capacity, understanding the extinction process necessarily includes environmental and demographic stochasticity. Here, we build from first principles two stochastic, single-population models that can account for various routes to extinction via demographic and environmental variability. The Ricker model of population dynamics generates extinctions from either low or high (around or above carrying capacity) population densities, primarily depending on the growth parameter r . Since extinctions from high densities seem 'unnatural', there is either something wrong with the model or with our intuition. Suitable data are scarce. Environmental variability has its strongest influence on extinction risk via per capita birth rates and is only marginally influencing that risk via per capita death rates if the growth parameter is high. The distribution of the environmental noise and the stochastic structure of the model have quantitative, but not qualitative effects on the estimates of extinction risks. We conclude that to determine the route to extinction and to estimate the extinction risk require a careful choice of both the deterministic component of the population model (e.g., under- or over-compensation) and the structure of the demographic and environmental variabilities.  相似文献   

16.
Much recent literature is concerned with how variation among individuals (e.g., variability in their traits and fates) translates into higher-level (i.e., population and community) dynamics. Although several theoretical frameworks have been devised to deal with the effects of individual variation on population dynamics, there are very few reports of empirically based estimates of the sign and magnitude of these effects. Here we describe an analytical model for size-dependent, seasonal life cycles and evaluate the effect of individual size variation on population dynamics and stability. We demonstrate that the effect of size variation on the population net reproductive rate varies in both magnitude and sign, depending on season length. We calibrate our model with field data on size- and density-dependent growth and survival of the generalist grasshopper Melanoplus femurrubrum. Under deterministic dynamics (fixed season length), size variation impairs population stability, given naturally occurring densities. However, in the stochastic case, where season length exhibits yearly fluctuations, size variation reduces the variance in population growth rates, thus enhancing stability. This occurs because the effect of size variation on net reproductive rate is dependent on season length. We discuss several limitations of the current model and outline possible routes for future model development.  相似文献   

17.
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought.  相似文献   

18.
Shriver RK  Cutler K  Doak DF 《Oecologia》2012,170(1):137-146
Lichens are major components in many terrestrial ecosystems, yet their population ecology is at best only poorly understood. Few studies have fully quantified the life history or demographic patterns of any lichen, with particularly little attention to epiphytic species. We conducted a 6-year demographic study of Vulpicida pinastri, an epiphytic foliose lichen, in south-central Alaska. After testing multiple size-structured functions to describe patterns in each V. pinastri demographic rate, we used the resulting estimates to construct a stochastic demographic model for the species. This model development led us to propose solutions to two general problems in construction of demographic models for many taxa: how to simply but accurately characterize highly skewed growth rates, and how to estimate recruitment rates that are exceptionally difficult to directly observe. Our results show that V. pinastri has rapid and variable growth and, for small individuals, low and variable survival, but that these traits are coupled with considerable longevity (e.g., >50?years mean future life span for a 4-cm(2) thallus) and little deviation of the stochastic population growth rate from the deterministic expectation. Comparisons of the demographic patterns we found with those of other lichen studies suggest that their relatively simple architecture may allow clearer generalities about growth patterns for lichens than for other taxa, and that the expected pattern of faster growth rates for epiphytic species is substantiated.  相似文献   

19.
Abstract We examined whether differences in life-history characteristics can explain interspecific variation in stochastic population dynamics in nine marine fish species living in the Barents Sea system. After observation errors in population estimates were accounted for, temporal variability in natural mortality rate, annual recruitment, and population growth rate was negatively related to generation time. Mean natural mortality rate, annual recruitment, and population growth rate were lower in long-lived species than in short-lived species. Thus, important species-specific characteristics of the population dynamics were related to the species position along the slow-fast continuum of life-history variation. These relationships were further associated with interspecific differences in ecology: species at the fast end were mainly pelagic, with short generation times and high natural mortality, annual recruitment, and population growth rates, and also showed high temporal variability in those demographic traits. In contrast, species at the slow end were long-lived, deepwater species with low rates and reduced temporal variability in the same demographic traits. These interspecific relationships show that the life-history characteristics of a species can predict basic features of interspecific variation in population dynamical characteristics of marine fish, which should have implications for the choice of harvest strategy to facilitate sustainable yields.  相似文献   

20.
An agent-based model was developed to simulate the growth rate, age structure, and social system of the endangered mountain gorillas (Gorilla beringei beringei) in the Virunga Volcanoes region. The model was used to compare two types of data: 1) estimates of the overall population size, age structure, and social structure, as measured by six censuses of the entire region that were conducted in 1971-2000; and 2) information about birth rates, mortality rates, dispersal patterns, and other life history events, as measured from three to five habituated research groups since 1967. On the basis of the research-group data, the "base simulation" predicted a higher growth rate than that observed from the census data (3% vs. 1%). This was as expected, because the research groups have indeed grown faster than the overall population. Additional simulations suggested that the research groups primarily have a lower mortality rate, rather than higher birth rates, compared to the overall population. Predictions from the base simulation generally fell within the range of census values for the average group size, the percentage of multimale groups, and the distribution of females among groups. However, other discrepancies predicted from the research-group data were a higher percentage of adult males than observed, an overestimation of the number of multimale groups with more than two silverbacks, and an overestimated number of groups with only two or three members. Possible causes for such discrepancies include inaccuracies in the census techniques used, and/or limitations with the long-term demographic data set obtained from only a few research groups of a long-lived species. In particular, estimates of mortality and male dispersal obtained from the research groups may not be representative of the entire population. Our final simulation addressed these discrepancies, and provided a better basis for further studies on the complex relationships among individual life history events, group composition, population age structure, and growth rate patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号