首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider a simple chemostat model involving two obligate mutualistic species feeding on a limiting substrate. Systems of differential equations are proposed as models of this association. A detailed qualitative analysis is carried out. We show the existence of a domain of coexistence, which is a set of initial conditions in which both species survive. We demonstrate, under certain supplementary assumptions, the uniqueness of the stable equilibrium point which corresponds to the coexistence of the two species.  相似文献   

2.
We propose a new hypothesis for species coexistence by considering behavioral interactions between individuals. The hypothesis states that repulsive behavior between conspecific males (male–male repulsion) creates space for competing species, which promotes their coexistence. This hypothesis can explain the coexistence of two competing species even when their ecological niches completely overlap in spatially homogeneous environments. In addition, the mechanisms underlying such behavior might play a role in enabling the coexistence of two species immediately after speciation, with little or no niche differentiation, as in the case of cichlid fish communities, for example. Although there is limited evidence supporting this hypothesis, it can nevertheless explain the occurrence of species coexistence and biodiversity, which cannot be explained by previous theories.  相似文献   

3.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

4.
Ecologists have long been searching for mechanisms of species coexistence, particularly since G.E. Hutchinson raised the ‘paradox of the plankton’. A promising approach to solve this paradox and to explain the coexistence of many species with strong niche overlap is to consider over-compensatory density regulation with its ability to generate endogenous population fluctuations.Previous work has analysed the role of over-compensation in coexistence based on analytical approaches. Using a spatially explicit time-discrete simulation model, we systematically explore the dynamics and conditions for coexistence of two species. We go beyond the analytically accessible range of models by studying the whole range of density regulation from under- to very strong over-compensation and consider the impact of spatial structure and temporal disturbances. In particular, we investigate how coexistence can emerge in different types of population growth models.We show that two strong competitors are able to coexist if at least one species exhibits over-compensation. Analysing the time series of population dynamics reveals how the differential responses to density fluctuations of the two competitors lead to coexistence: The over-compensator generates density fluctuations but is the inferior competitor at strong amplitudes of those fluctuations; the competitor, therefore, becomes frequent and dampens the over-compensator's amplitudes, but it becomes inferior under dampened fluctuations.These species interactions cause a dynamic alternation of community states with long-term persistence of both species. We show that a variety of population growth models is able to reproduce this coexistence although the particular parameter ranges differ among the models. Spatial structure influences the probability of coexistence but coexistence is maintained for a broad range of dispersal parameters.The flexibility and robustness of coexistence through over-compensation emphasize the importance of nonlinear density dependence for species interactions, and they also highlight the potential of applying more flexible models than the classical Lotka-Volterra equations in community ecology.  相似文献   

5.
The metacommunity approach is an adequate framework to study coexistence between interacting species at different spatial scales. However, empirical evidence from natural metacommunities necessary to evaluate the predictive power of theoretical models of species coexistence remains sparse. We use two African ant species, Cataulacus mckeyi and Petalomyrmex phylax , symbiotically associated with the myrmecophyte Leonardoxa africana africana , to examine spatio-temporal dynamics of species coexistence and to investigate which environmental and life-history parameters may contribute to the maintenance of species diversity in this guild of symbiotic ants. Using environmental niche partitioning as a conceptual framework, we combined data on habitat variation, social structure of colonies, and population genetics with data from a colonisation experiment and from observation of temporal dynamics. We propose that the dynamics of ant species colonisation and replacement at local and regional scales can be explained by a set of life history traits for which the two ants exhibit hierarchies, coupled with strong environmental differences between the different patches in the level of environmental disturbances. The role of the competition–colonisation tradeoff is discussed and we propose that interspecific tradeoffs for traits related to dispersal and to reproduction are also determinant for species coexistence. We therefore suggest that species-sorting mechanisms are predominant in the dynamics of this metacommunity, but we also emphasise that there may be many ways for two symbionts in competition for the same host to coexist. The results speak in favour of a more complete integration of the various metacommunity models in a single theoretical framework.  相似文献   

6.
In the absence of other limiting factors, assemblages in which species share a common, effective natural enemy are not expected to persist. Although a variety of mechanisms have been postulated to explain the coexistence of species that share natural enemies, the role of productivity gradients has not been explored in detail. Here, we examine how enrichment can affect the outcome of apparent competition. We develop a structured resource/consumer/natural enemy model in which the prey are exposed to attacks during a vulnerable life phase, the length of which depends on resource availability. With a single prey species, the model exhibits the "paradox of enrichment," with unstable dynamics at high levels of resource productivity. We extend this model to consider two prey species linked by a shared predator, each with their own distinct resource base. We derive invasion and stability conditions and examine how enrichment influences prey species exclusion and coexistence. Contrary to expectations from simpler, prey-dependent models, apparent competition is not necessarily strong at high productivity, and prey species coexistence may thus be more likely in enriched environments. Further, the coexistence of apparent competitors may be facilitated by unstable dynamics. These results contrast with the standard theory that apparent competition in productive environments leads to nonpersistent interactions and that coexistence of multispecies interactions is more likely under equilibrial conditions.  相似文献   

7.
This article seeks to determine the extent to which endogenous consumer-resource cycles can contribute to the coexistence of competing consumer species. It begins with a numerical analysis of a simple model proposed by Armstrong and McGehee. This model has a single resource and two consumers, one with a linear functional response and one with a saturating response. Coexistence of the two consumer species can occur when the species with a saturating response generates population cycles of the resource, and also has a lower resource requirement for zero population growth. Coexistence can be achieved over a wide range of relative efficiencies of the two consumers provided that the functional response of the saturating consumer reaches its half-saturation value when the resource population is a small fraction of its carrying capacity. In this case, the range of efficiencies allowing coexistence is comparable to that when two competitors have stable dynamics and a high degree of resource partitioning. A variety of modifications of this basic model are analyzed to investigate the consequences for coexistence of different resource growth equations, different functional and numerical response shapes, and other factors. Large differences in functional response shape appear to be the most important factor in producing robust coexistence via resource cycles. If the unstable species has a concave numerical response, this greatly expands the conditions allowing coexistence. If the stable consumer species has a convex (accelerating) functional and/or numerical response, the range of conditions allowing coexistence is also expanded. We argue that large between-species differences in functional response form can often be produced by between-consumer differences in the adaptive adjustments of foraging effort to food density. Consumer-resource cycles can also expand the conditions allowing coexistence when there is resource partitioning, but do so primarily when resource partitioning is relatively slight; this makes the ease of coexistence relatively independent of consumer similarity.  相似文献   

8.
Microbial communities in fluctuating environments, such as oceans or the human gut, contain a wealth of diversity. This diversity contributes to the stability of communities and the functions they have in their hosts and ecosystems. To improve stability and increase production of beneficial compounds, we need to understand the underlying mechanisms causing this diversity. When nutrient levels fluctuate over time, one possibly relevant mechanism is coexistence between specialists on low and specialists on high nutrient levels. The relevance of this process is supported by the observations of coexistence in the laboratory, and by simple models, which show that negative frequency dependence of two such specialists can stabilize coexistence. However, as microbial populations are often large and fast growing, they evolve rapidly. Our aim is to determine what happens when species can evolve; whether evolutionary branching can create diversity or whether evolution will destabilize coexistence. We derive an analytical expression of the invasion fitness in fluctuating environments and use adaptive dynamics techniques to find that evolutionarily stable coexistence requires a special type of trade-off between growth at low and high nutrients. We do not find support for the necessary evolutionary trade-off in data available for the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae on glucose. However, this type of data is scarce and might exist for other species or in different conditions. Moreover, we do find evidence for evolutionarily stable coexistence of the two species together. Since we find this coexistence in the scarce data that are available, we predict that specialization on resource level is a relevant mechanism for species diversity in microbial communities in fluctuating environments in natural settings.  相似文献   

9.
Long-term coexistence of rotifer cryptic species   总被引:1,自引:0,他引:1  
Despite their high morphological similarity, cryptic species often coexist in aquatic habitats presenting a challenge in the framework of niche differentiation theory and coexistence mechanisms. Here we use a rotifer species complex inhabiting highly unpredictable and fluctuating salt lakes to gain insights into the mechanisms involved in stable coexistence in cryptic species. We combined molecular barcoding surveys of planktonic populations and paleogenetic analysis of diapausing eggs to reconstruct the current and historical coexistence dynamics of two highly morphologically similar rotifer species, B. plicatilis and B. manjavacas. In addition, we carried out laboratory experiments using clones isolated from eight lakes where both species coexist to explore their clonal growth responses to salinity, a challenging, highly variable and unpredictable condition in Mediterranean salt lakes. We show that both species have co-occurred in a stable way in one lake, with population fluctuations in which no species was permanently excluded. The seasonal occurrence patterns of the plankton in two lakes agree with laboratory experiments showing that both species differ in their optimal salinity. These results suggest that stable species coexistence is mediated by differential responses to salinity and its fluctuating regime. We discuss the role of fluctuating salinity and a persistent diapausing egg banks as a mechanism for species coexistence in accordance with the 'storage effect'.  相似文献   

10.
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation.  相似文献   

11.
Shade tolerance,canopy gaps and mechanisms of coexistence of forest trees   总被引:3,自引:0,他引:3  
The belief that canopy gaps are important for the maintenance of tree species diversity appears to be widespread, but there have been no formal theoretical models to assess under what conditions gap phase processes allow coexistence. Much of the empirical research on niche differentiation in response to gaps has focused on evidence for an interspecific tradeoff between low light survival and high light growth. The objectives of this study are first to distinguish the possible mechanisms allowing coexistence based on this tradeoff, and second, to explore their limitations. We present a theory of forest dynamics driven by small‐scale disturbances as a special case of the theory of coexistence in variable environments. We demonstrate that temporal and spatial heterogeneity in light conditions that results from canopy gaps can allow stable coexistence as a result of three previously documented general mechanisms: ‘relative non‐linearity’, ‘the successional niche’ and the ‘storage effect’. We find that temporal fluctuations in light availability alone allow the stable coexistence of only two species. Spatial variation in disturbance synchronicity and intensity allows three species to coexist in a narrow parameter space. The rate of extinction is, however, extremely slow and there is transient coexistence of a larger number of species for a long period of time. We conclude that while the low light survival/high light growth tradeoff may be ubiquitous in forest tree species, it is unlikely to function as an important mechanism for the stable coexistence of several tree species.  相似文献   

12.
Two competing consumer species may coexist using a single homogeneous resource when the more efficient consumer--the one having the lowest equilibrium resource density--has a more nonlinear functional response that generates consumer-resource cycles. We extend this model of nonequilibrium coexistence, as proposed by Armstrong and McGehee, by putting the interaction into a spatial context using two frameworks: a spatially explicit individual-based model and a spatially implicit metapopulation model. We find that Armstrong and McGehee's mechanism of coexistence can operate in a spatial context. However, individual-based simulations suggest that decreased dispersal restricts coexistence in most cases, whereas differential equation models of metapopulations suggest that a low rate of dispersal between subpopulations often increases the coexistence region. This difference arises in part because of two potentially opposing effects on coexistence due to the asynchrony in the temporal dynamics at different locations. Asynchrony implies that the less efficient species is more likely to be favored in some spatial locations at any given time, which broadens the conditions for coexistence. On the other hand, asynchrony and dispersal can also reduce the amplitude of local population cycles, which restricts coexistence. The relative influence of these two effects depends on details of the population dynamics and the representation of space. Our results also demonstrate that coexistence via the Armstrong-McGehee mechanism can occur even when there is little variation in the global densities of either the consumers or the resource, suggesting that empirical studies of the mechanisms should measure densities on several spatial scales.  相似文献   

13.
We study a chemostat model in which two microbial species grow on a single resource. We show that species coexistence is possible when the species which would normally win the exclusive competition aggregates in flocs. Our mathematical analysis exploits the fact that flocculation is fast compared to biological growth, a common hypothesis in floc models. A numerical study shows the validity of this approach in a large parameter range. We indicate how our model yields a mechanistic justification for the so-called density-dependent growth.  相似文献   

14.
We study a chemostat model in which two microbial species grow on a single resource. We show that species coexistence is possible when the species which would normally win the exclusive competition aggregates in flocs. Our mathematical analysis exploits the fact that flocculation is fast compared to biological growth, a common hypothesis in floc models. A numerical study shows the validity of this approach in a large parameter range. We indicate how our model yields a mechanistic justification for the so-called density-dependent growth.  相似文献   

15.
Interactions between environmental conditions and environment-affecting species have not been investigated extensively. In this study, the population dynamics of species yielding regulative feedback between temperature (a representative of environmental condition) and species with a temperature-altering trait was examined. We considered a simple closed model that described the population of two species (at least one of them had a temperature-altering trait) competing for one resource. The long-term outcomes of the competition and changes of temperature were explored against increasing background temperature. As a result of simulations, the regulation of temperature was accompanied by the coexistence of two species, which was contrary to the 'Gause's exclusion principle'. The steady-state analysis showed that (i) the temperature-altering trait allowed species to coexist and (ii) the coexistence of species with the trait could introduce the regulation of temperature. A 'trade-off' in their ability to utilize a resource plays a key role in this coexistence and homeostasis of temperature. This may imply that actual environmental conditions can be automatically stabilized by resource competition among species in natural ecosystems.  相似文献   

16.
DeLong JP  Vasseur DA 《PloS one》2012,7(1):e30081
Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.  相似文献   

17.
Modern coexistence theory (MCT) is one of the leading methods to understand species coexistence. It uses invasion growth rates—the average, per-capita growth rate of a rare species—to identify when and why species coexist. Despite significant advances in dissecting coexistence mechanisms when coexistence occurs, MCT relies on a ‘mutual invasibility’ condition designed for two-species communities but poorly defined for species-rich communities. Here, we review well-known issues with this component of MCT and propose a solution based on recent mathematical advances. We propose a clear framework for expanding MCT to species-rich communities and for understanding invasion resistance as well as coexistence, especially for communities that could not be analysed with MCT so far. Using two data-driven community models from the literature, we illustrate the utility of our framework and highlight the opportunities for bridging the fields of community assembly and species coexistence.  相似文献   

18.
1. Temperature fluctuation is a general phenomenon affecting many, if not all, species in nature. While a few studies have shown that temperature fluctuation can promote species coexistence, little is known about the effects of different regimes of temperature fluctuation on coexistence. 2. We experimentally investigated how temperature fluctuation and different regimes of temperature fluctuation ('red' environments in which temperature series exhibited positive temporal autocorrelation vs. 'white' environments in which temperature series showed little autocorrelation) affected the coexistence of two ciliated protists, Colpidium striatum Stein and Paramecium tetraurelia Sonneborn, which competed for bacterial resources. 3. We have previously shown that the two species differed in their growth responses to changes in temperature and in their resource utilization patterns. The two species were not always able to coexist at constant temperatures (22, 24, 26, 28 and 30 degrees C), with Paramecium being competitively excluded at 26 and 28 degrees C. This indicated that resource partitioning was insufficient to maintain coexistence at these temperatures. 4. Here we show that in both red and white environments in which temperature varied between 22 and 32 degrees C, Paramecium coexisted with Colpidium. Consistent with the differential effects of temperature on their intrinsic growth rates, Paramecium population dynamics were largely unaffected by temperature regimes, and Colpidium showed more variable population dynamics in the red environments. 5. Temperature-dependent competitive effects of Colpidium on Paramecium, together with resource partitioning, appeared to be responsible for the coexistence in the white environments; resource partitioning and the storage effect appeared to account for the coexistence in the red environments. 6. These results suggest that temperature fluctuation may play important roles in regulating species coexistence and diversity in ecological communities.  相似文献   

19.
We examine the conditions under which spatial structure can mediate coexistence of apparent competitors. We use a spatially explicit, host-parasitoid metapopulation model incorporating local dynamics of Nicholson-Bailey type and global dispersal. Depending on the model parameters, the resulting system displays a plethora of asynchronous dynamical behaviors for which permanent or transient coexistence is observed. We identify a number of spatially mediated tradeoffs which apparent competitors can utilize and demonstrate that the dynamics of spatial coexistence can typically be understood from consideration of two and three patch systems. The phase relationships of species abundances are different for our model than for some other mechanisms of spatial coexistence. We discuss the implications of our findings relative to issues of community organization and biological conservation.  相似文献   

20.
Competition is one of the main drivers of dispersal, which can be an important mechanism to achieve permanent or temporal coexistence of multiple species. This coexistence can be achieved by a dispersal‐competition tradeoff, spatial store effects or neutral dynamics. Here we test the effect of inter‐ and intraspecific competition on dispersal of four species of the marine nematode species complex Litoditis marina. A previous study in closed microcosms without a possibility for dispersal had demonstrated pronounced interspecific competition, leading to the exclusion of one species. We now investigated whether 1) the dispersal is affected by interspecific interactions, by intraspecific competition (density) or by food availability, 2) the dispersal dynamics influence assemblage composition and can lead to co‐occurrence of the species, and 3) the abiotic environment (here salinity) can affect these dynamics. We show that density is the main driver for dispersal in two of the four species. Dispersal of a third species always started at the same time irrespective of density, whereas in the fourth species interspecific interactions accelerated dispersal. Remarkably, this fourth species was not a strong competitor, suggesting that a dispersal–competition tradeoff does not explain the observed coexistence. Salinity did not alter the timing of dispersal when interspecific interactions were present but did affect assemblage composition. Consequently, spatial store effects may influence coexistence. All four species co‐occurred in fairly stable abundances throughout the present experiment indicating the importance of species specific dispersal strategies for coexistence. Co‐occurrence can be facilitated because competition is postponed or avoided by dispersal. Neutral dynamics also played a role as intra‐ and interspecific competition were of similar importance in three of the four species. We conclude that dispersal is a driver of the coexistence of closely related nematode species, and that population density and interspecific interactions shape these dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号