首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic reproduction number ?(0) for a compartmental disease model is often calculated by the next generation matrix (NGM) approach. When the interactions within and between disease compartments are interpreted differently, the NGM approach may lead to different ?(0) expressions. This is demonstrated by considering a susceptible-infectious-recovered-susceptible model with free-living pathogen (FLP) growing in the environment. Although the environment could play different roles in the disease transmission process, leading to different ?(0) expressions, there is a unique type reproduction number when control strategies are applied to the host population. All ?(0) expressions agree on the threshold value 1 and preserve their order of magnitude. However, using data for salmonellosis and cholera, it is shown that the estimated ?(0) values are substantially different. This study highlights the utility and limitations of reproduction numbers to accurately quantify the effects of control strategies for infections with FLPs growing in the environment.  相似文献   

2.
We describe a new approach for investigating the control strategies of compartmental disease transmission models. The method rests on the construction of various alternative next-generation matrices, and makes use of the type reproduction number and the target reproduction number. A general metapopulation SIRS (susceptible–infected–recovered–susceptible) model is given to illustrate the application of the method. Such model is useful to study a wide variety of diseases where the population is distributed over geographically separated regions. Considering various control measures such as vaccination, social distancing, and travel restrictions, the procedure allows us to precisely describe in terms of the model parameters, how control methods should be implemented in the SIRS model to ensure disease elimination. In particular, we characterize cases where changing only the travel rates between the regions is sufficient to prevent an outbreak.  相似文献   

3.
In this paper, an SIS patch model with non-constant transmission coefficients is formulated to investigate the effect of media coverage and human movement on the spread of infectious diseases among patches. The basic reproduction number R0 is determined. It is shown that the disease-free equilibrium is globally asymptotically stable if R0?1, and the disease is uniformly persistent and there exists at least one endemic equilibrium if R0>1. In particular, when the disease is non-fatal and the travel rates of susceptible and infectious individuals in each patch are the same, the endemic equilibrium is unique and is globally asymptotically stable as R0>1. Numerical calculations are performed to illustrate some results for the case with two patches.  相似文献   

4.
The theoretical underpinning of our struggle with vector-borne disease, and still our strongest tool, remains the basic reproduction number, R0, the measure of long term endemicity. Despite its widespread application, R0 does not address the dynamics of epidemics in a model that has an endemic equilibrium. We use the concept of reactivity to derive a threshold index for epidemicity, E0, which gives the maximum number of new infections produced by an infective individual at a disease free equilibrium. This index describes the transitory behavior of disease following a temporary perturbation in prevalence. We demonstrate that if the threshold for epidemicity is surpassed, then an epidemic peak can occur, that is, prevalence can increase further, even when the disease is not endemic and so dies out. The relative influence of parameters on E0 and R0 may differ and lead to different strategies for control. We apply this new threshold index for epidemicity to models of vector-borne disease because these models have a long history of mathematical analysis and application. We find that both the transmission efficiency from hosts to vectors and the vector-host ratio may have a stronger effect on epidemicity than endemicity. The duration of the extrinsic incubation period required by the pathogen to transform an infected vector to an infectious vector, however, may have a stronger effect on endemicity than epidemicity. We use the index E0 to examine how vector behavior affects epidemicity. We find that parasite modified behavior, feeding bias by vectors for infected hosts, and heterogeneous host attractiveness contribute significantly to transitory epidemics. We anticipate that the epidemicity index will lead to a reevaluation of control strategies for vector-borne disease and be applicable to other disease transmission models.  相似文献   

5.
A multipatch model is proposed to study the impact of travel on the spatial spread of disease between patches with different level of disease prevalence. The basic reproduction number for the ith patch in isolation is obtained along with the basic reproduction number of the system of patches, ℜ0. Inequalities describing the relationship between these numbers are also given. For a two-patch model with one high prevalence patch and one low prevalence patch, results pertaining to the dependence of ℜ0 on the travel rates between the two patches are obtained. For parameter values relevant for influenza, these results show that, while banning travel of infectives from the low to the high prevalence patch always contributes to disease control, banning travel of symptomatic travelers only from the high to the low prevalence patch could adversely affect the containment of the outbreak under certain ranges of parameter values. Moreover, banning all travel of infected individuals from the high to the low prevalence patch could result in the low prevalence patch becoming diseasefree, while the high prevalence patch becomes even more disease-prevalent, with the resulting number of infectives in this patch alone exceeding the combined number of infectives in both patches without border control. Under the set of parameter values used, our results demonstrate that if border control is properly implemented, then it could contribute to stopping the spatial spread of disease between patches.  相似文献   

6.
The main purpose of this paper is to give an approximate formula involving two terms for the basic reproduction number R 0 of a vector-borne disease when the vector population has small seasonal fluctuations of the form p(t) = p 0 (1+ε cos (ωt − φ)) with ε ≪ 1. The first term is similar to the case of a constant vector population p but with p replaced by the average vector population p 0. The maximum correction due to the second term is (ε2/8)% and always tends to decrease R 0. The basic reproduction number R 0 is defined through the spectral radius of a linear integral operator. Four numerical methods for the computation of R 0 are compared using as example a model for the 2005/2006 chikungunya epidemic in La Réunion. The approximate formula and the numerical methods can be used for many other epidemic models with seasonality. MSC 92D30 ⋅ 45C05 ⋅ 47A55  相似文献   

7.
First generation HIV vaccines may have limited ability to prevent infection. Instead, they may delay the onset of AIDS or reduce the infectiousness of vaccinated individuals who become infected. To assess the population level effects of such a vaccine, we formulate a deterministic model for the spread of HIV in a homosexual population in which the use of highly active antiretroviral therapy (HAART) to treat HIV infection is incorporated. The basic reproduction number R 0 is obtained under this model. We then expand the model to include the potential effects of a prophylactic HIV vaccine. The reproduction number R f is derived for a population in which a fraction f of susceptible individuals is vaccinated and continues to benefit from vaccination. We define f * as the minimum vaccination fraction for which R f ≤1 and describe situations in which it equals the critical vaccination fraction necessary to eliminate disease. When R 0 is large or an HIV vaccine is only partially effective, the critical vaccination fraction may exceed one. HIV vaccination, however, may still reduce the prevalence of disease if the reduction in infectiousness is at least as great as the reduction in the rate of disease progression. In particular, a vaccine that reduces infectiousness during acute infection may have an important public health impact especially if coupled with counseling to reduce risky behavior.  相似文献   

8.
Compartmental models for influenza that include control by vaccination and antiviral treatment are formulated. Analytic expressions for the basic reproduction number, control reproduction number and the final size of the epidemic are derived for this general class of disease transmission models. Sensitivity and uncertainty analyses of the dependence of the control reproduction number on the parameters of the model give a comparison of the various intervention strategies. Numerical computations of the deterministic models are compared with those of recent stochastic simulation influenza models. Predictions of the deterministic compartmental models are in general agreement with those of the stochastic simulation models.  相似文献   

9.
The number of patients need to be treated may exceed the carry capacity of local hospitals during the spreading of a severe infectious disease. We propose an epidemic model with saturation recovery from infective individuals to understand the effect of limited resources for treatment of infectives on the emergency disease control. It is shown that saturation recovery from infective individuals leads to vital dynamics, such as bistability and periodicity, when the basic reproduction number R0 is less than unity. An interesting dynamical behavior of the model is a backward bifurcation which raises many new challenges to effective infection control.  相似文献   

10.
In this paper, we introduce a model of malaria, a disease that involves a complex life cycle of parasites, requiring both human and mosquito hosts. The novelty of the model is the introduction of periodic coefficients into the system of one-dimensional equations, which account for the seasonal variations (wet and dry seasons) in the mosquito birth and death rates. We define a basic reproduction number R 0 that depends on the periodic coefficients and prove that if R 0<1 then the disease becomes extinct, whereas if R 0>1 then the disease is endemic and may even be periodic.  相似文献   

11.
12.
Emerging and re-emerging infections such as SARS (2003) and pandemic H1N1 (2009) have caused concern for public health researchers and policy makers due to the increased burden of these diseases on health care systems. This concern has prompted the use of mathematical models to evaluate strategies to control disease spread, making these models invaluable tools to identify optimal intervention strategies. A particularly important quantity in infectious disease epidemiology is the basic reproduction number, R0. Estimation of this quantity is crucial for effective control responses in the early phase of an epidemic. In our previous study, an approach for estimating the basic reproduction number in real time was developed. This approach uses case notification data and the structure of potential transmission contacts to accurately estimate R0 from the limited amount of information available at the early stage of an outbreak. Based on this approach, we extend the existing methodology; the most recent method features intra- and inter-age groups contact heterogeneity. Given the number of newly reported cases at the early stage of the outbreak, with parsimony assumptions on removal distribution and infectivity profile of the diseases, experiments to estimate real time R0 under different levels of intra- and inter-group contact heterogeneity using two age groups are presented. We show that the new method converges more quickly to the actual value of R0 than the previous one, in particular when there is high-level intra-group and inter-group contact heterogeneity. With the age specific contact patterns, number of newly reported cases, removal distribution, and information about the natural history of the 2009 pandemic influenza in Hong Kong, we also use the extended model to estimate R0 and age-specific R0.  相似文献   

13.
A general mathematical model is proposed to study the impact of group mixing in a heterogeneous host population on the spread of a disease that confers temporary immunity upon recovery. The model contains general distribution functions that account for the probabilities that individuals remain in the recovered class after recovery. For this model, the basic reproduction number R0 is identified. It is shown that if R0<1, then the disease dies out in the sense that the disease free equilibrium is globally asymptotically stable; whereas if R0>1, this equilibrium becomes unstable. In this latter case, depending on the distribution functions and the group mixing strengths, the disease either persists at a constant endemic level or exhibits sustained oscillatory behavior.  相似文献   

14.
With the recent resurgence of vector-borne diseases due to urbanization and development there is an urgent need to understand the dynamics of vector-borne diseases in rapidly changing urban environments. For example, many empirical studies have produced the disturbing finding that diseases continue to persist in modern city centers with zero or low rates of transmission. We develop spatial models of vector-borne disease dynamics on a network of patches to examine how the movement of humans in heterogeneous environments affects transmission. We show that the movement of humans between patches is sufficient to maintain disease persistence in patches with zero transmission. We construct two classes of models using different approaches: (i) Lagrangian models that mimic human commuting behavior and (ii) Eulerian models that mimic human migration. We determine the basic reproduction number R0 for both modeling approaches. We show that for both approaches that if the disease-free equilibrium is stable (R0<1) then it is globally stable and if the disease-free equilibrium is unstable (R0>1) then there exists a unique positive (endemic) equilibrium that is globally stable among positive solutions. Finally, we prove in general that Lagrangian and Eulerian modeling approaches are not equivalent. The modeling approaches presented provide a framework to explore spatial vector-borne disease dynamics and control in heterogeneous environments. As an example, we consider two patches in which the disease dies out in both patches when there is no movement between them. Numerical simulations demonstrate that the disease becomes endemic in both patches when humans move between the two patches.  相似文献   

15.
This paper is concerned with the qualitative analysis of two models [S. Bonhoeffer, M. Lipsitch, B.R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA 94 (1997) 12106] for different treatment protocols to prevent antibiotic resistance. Detailed qualitative analysis about the local or global stability of the equilibria of both models is carried out in term of the basic reproduction number R0. For the model with a single antibiotic therapy, we show that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable; if R0 > 1, then the disease-endemic equilibrium is globally asymptotically stable. For the model with multiple antibiotic therapies, stabilities of various equilibria are analyzed and combining treatment is shown better than cycling treatment. Numerical simulations are performed to show that the dynamical properties depend intimately upon the parameters.  相似文献   

16.
The feedback dynamics from mosquito to human and back to mosquito involve considerable time delays due to the incubation periods of the parasites. In this paper, taking explicit account of the incubation periods of parasites within the human and the mosquito, we first propose a delayed Ross–Macdonald model. Then we calculate the basic reproduction number R 0 and carry out some sensitivity analysis of R 0 on the incubation periods, that is, to study the effect of time delays on the basic reproduction number. It is shown that the basic reproduction number is a decreasing function of both time delays. Thus, prolonging the incubation periods in either humans or mosquitos (via medicine or control measures) could reduce the prevalence of infection. S. Ruan’s research was partially supported by NIH grants P20RR020770-02 and R01GM083607-01, NSF grant DMS-0715772. D. Xiao’s research was supported by the National Natural Science Fund (NNSF) of China.  相似文献   

17.
Preventing and managing the HIV/AIDS epidemic in South Africa will dominate the next decade and beyond. Reduction of new HIV infections by implementing a comprehensive national HIV prevention programme at a sufficient scale to have real impact remains a priority. In this paper, a deterministic HIV/AIDS model that incorporates condom use, screening through HIV counseling and testing (HCT), regular testing and treatment as control strategies is proposed with the objective of quantifying the effectiveness of HCT in preventing new infections and predicting the long-term dynamics of the epidemic. It is found that a backward bifurcation occurs if the rate of screening is below a certain threshold, suggesting that the classical requirement for the basic reproduction number to be below unity though necessary, is not sufficient for disease control in this case. The global stabilities of the equilibria under certain conditions are determined in terms of the model reproduction number R0. Numerical simulations are performed and the model is fitted to data on HIV prevalence in South Africa. The effects of changes in some key epidemiological parameters are investigated. Projections are made to predict the long-term dynamics of the disease. The epidemiological implications of such projections on public health planning and management are discussed.  相似文献   

18.
Hepatitis B virus (HBV) infection is a globally health problem. In 2005, the WHO Western Pacific Regional Office set a goal of reducing chronic HBV infection rate to less than 2% among children five years of age by 2012, as an interim milestone towards the final goal of less than 1%. Many countries made some plans (such as free HBV vaccination program for all neonates in China now) to control the transmission HBV. We develop a model to explore the impact of vaccination and other controlling measures of HBV infection. The model has simple dynamical behavior which has a globally asymptotically stable disease-free equilibrium when the basic reproduction number R0≤1, and a globally asymptotically stable endemic equilibrium when R0>1. Numerical simulation results show that the vaccination is a very effective measure to control the infection and they also give some useful comments on controlling the transmission of HBV.  相似文献   

19.
In this paper an SIS model for epidemic spreading on semi-directed networks is established, which can be used to examine and compare the impact of undirected and directed contacts on disease spread. The model is analyzed for the case of uncorrelated semi-directed networks, and the basic reproduction number R0R0 is obtained analytically. We verify that the R0R0 contains the outbreak threshold on undirected networks and directed networks as special cases. It is proved that if R0<1R0<1 then the disease-free equilibrium is globally asymptotically stable, otherwise the disease-free equilibrium is unstable and the unique endemic equilibrium exists, which is globally asymptotically stable. Finally the numerical simulations holds for these analytical results are given.  相似文献   

20.
We propose a compartmental disease transmission model with an asymptomatic (or subclinical) infective class to study the role of asymptomatic infection in the transmission dynamics of infectious diseases with asymptomatic infectives, e.g., influenza. Analytical results are obtained using the respective ratios of susceptible, exposed (incubating), and asymptomatic classes to the clinical symptomatic infective class. Conditions are given for bistability of equilibria to occur, where trajectories with distinct initial values could result in either a major outbreak where the disease spreads to the whole population or a lesser outbreak where some members of the population remain uninfected. This dynamic behavior did not arise in a SARS model without asymptomatic infective class studied by Hsu and Hsieh (SIAM J. Appl. Math. 66(2), 627–647, 2006). Hence, this illustrates that depending on the initial states, control of a disease outbreak with asymptomatic infections may involve more than simply reducing the reproduction number. Moreover, the presence of asymptomatic infections could result in either a positive or negative impact on the outbreak, depending on different sets of conditions on the parameters, as illustrated with numerical simulations. Biological interpretations of the analytical and numerical results are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号