首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerizations of D ,-L β-phenylalanine NCA, p–nitro-D ,L -β-phenylalanine NCA, and o,p-dinitro-D ,L -β-phenylalanine NCA were investigated, homopolymers and copolymers of N-vinyl-2-ethylimidazole or 2-Vinylpyridine being used as catalysts. When N-vinylpyrrolidone and N,N-diethylacrylamide, which are capable of forming hydrogen bonds with the NCA's, were used as comonomers with N-vinyl-2-ethylimidazole, the copolymer catalysts were found to bring about a faster polymerization than poly-N-vinyl-2-ethylimidazole. However, when styrene, which has no particular interaction with the NCA's, was used as a comonomer with 2-vinylpyridine, the copolymer catalyst was found to give a slower polymerization than poly-2-vinylpyridine. Electronic spectroscopy showed that the charge-transfer complex between copolymer catalysts and the NCA's plays an important role in the polymerization. The experimental results are discussed in terms of the effectiveness of the copolymer catalysts for forming hydrogen bonds or charge-transfer complexes with the NCA's.  相似文献   

2.
The copolymer which has both ligand sites (4-vinylpyridine) and redox sites (N-(p-vinylbenzyl)-3-carbamoyl-1,4-dihydropyridine) was synthesized by the dithionite reduction of the copoly(4-vinylpyridine-N-(p-vinylbenzyl)-3-carbamoylpyridinium chloride) and the reduction of a central ferric-iron of ferriprotoporphyrin IX by the above-described copolymer was studied spectrophotometrically in dimethyl sulfoxide. The rate of the reduction by the copolymer was much faster than by N-benzyl-3-carbamoyl-1,4-dihydropyridine. This acceleration by the copolymer could be explained by the intramolecular reduction of ferriprotoporphyrin IX which was coordinated by the pyridine residue of the copolymer.  相似文献   

3.
The protein dipole moment is a low-resolution parameter that characterizes the second-order charge organization of a biomolecule. Theoretical approaches to calculate protein dipole moments rely on pK a values, which are either computed individually for each ionizable residue or obtained from model compounds. The influence of pK a shifts are evaluated first by comparing calculated and measured dipole moments of β-lactoglobulin. Second, calculations are made on a dataset of 66 proteins from the Protein Data Bank, and average differences are determined between dipole moments calculated with model pK as, pK as derived using a Poisson–Boltzmann approach, and empirically-calculated pK as. Dipole moment predictions that neglect pK a shifts are consistently larger than predictions in which they are included. The importance of pK a shifts are observed to vary with protein size, internal permittivity, and solution pH.  相似文献   

4.
Potentiometric titrations and some complementary optical rotation data are presented for solutions of poly(L - glutamic acid) (PGA) in several H2O–ethanol mixtures. The data allow the determination of the intrinsic pK (pK0), slope of the apparent. pK (pKapp), versus degree of ionization curves and of the enthalpy of ionization as a function of ethanol concentration. The variation of the degree of ionization at which the helix–coil transformation occurs with ethanol and temperature is also determined. Finally free energy, enthalpy, and intropy changes associated with the helix–coil transformation for the uncharged conformers are determined from the titration curves. The effect of the ethanol is to increase the stability of the helical conformation of PGA for both the charged and the uncharged forms of the polymer. The stabilization of the uncharged helix is essentially an entropic effect.  相似文献   

5.
The pH dependence of redox properties, spectroscopic features and CO binding kinetics for the chelated protohemin-6(7)-l-histidine methyl ester (heme-H) and the chelated protohemin-6(7)-glycyl-l-histidine methyl ester (heme-GH) systems has been investigated between pH 2.0 and 12.0. The two heme systems appear to be modulated by four protonating groups, tentatively identified as coordinated H2O, one of heme’s propionates, Nε of the coordinating imidazole, and the carboxylate of the histidine residue upon hydrolysis of the methyl ester group (in acid medium). The pK a values are different for the two hemes, thus reflecting structural differences. In particular, the different strain at the Fe–N ε bond, related to the different length of the coordinating arm, results in a dramatic alteration of the bond strength, which is much smaller in heme-H than in heme-GH. It leads to a variation in the variation of the pK a for the protonation of the N ε of the axial imidazole as well as in the proton-linked behavior of the other protonating groups, envisaging a cross-talk communication mechanism among different groups of the heme, which can be operative and relevant also in the presence of the protein matrix. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Copolymers of N‐isopropylacrylamide and N‐acryloyl amino acid spacers of varying chain length were synthesized. p‐Aminobenzamidine (PABA) was chemically linked to the pendant carboxyl groups of these polymers to obtain thermoprecipitating affinity polymers. The inhibition constant (Ki) of these polymers for trypsin decreased, i.e., the efficiency of PABA–trypsin binding increased with increase in the spacer chain length. The polymer to which PABA was linked through a spacer of five methylene groups exhibited eleven times lower Ki than that of the polymer containing PABA without a spacer. Investigations on model inhibitors N‐acyl‐p‐aminobenzamidines showed that this enhancement in trypsin binding by the polymers was due to the spacer as well as to microenvironmental effects. Recovery and specific activity of the trypsin recovered increased with the spacer chain length. Separation of trypsin from a mixture of trypsin and chymotrypsin was also enhanced with the spacer chain length. The inhibition constants of these affinity polymers were not adversely affected by the crowding effect. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 418–425, 1999.  相似文献   

7.
M. Rinaudo  M. Mils 《Biopolymers》1978,17(11):2663-2678
The main physicochemical properties of the polysaccharide called Xanthan produced by Xanthomonas compestris are discussed: the activity coefficient of the counter-ion, the pK(α), and the ionic selectivity are investigated and compared to those of a carboxymetholcellulose. The weight-average molecular weight (M w = 2 × 106), the intrinsic viscosity and the constant of sedimentation are determined as a function of the ionic strength. It is proved that in dilute solution, there is no intermolecular association, whatever the ionic strength. The conformation is proposed to be a rigid rodlike molecule whose length is 6000 Å, independent of ionic strength > 10?2N.  相似文献   

8.
The influence of pH within the range 6.9–10.0 on the kinetic parameters of Micrococcus lysodeicticus cell lysis catalyzed by hen egg lysozyme has been studied at 25°C and 37°C. The effective pK b values have been calculated for the group determining lysozyme catalytic activity. The ΔH ion value indicates that this group is a carboxyl, although its pK (9.15 at 25°C) is far beyond the range characteristic of carboxylic groups. The cause of this abnormal pK b value is supposed to be the strong negative charge of the bacterial cell wall. As a result, the enzyme, which catalyzes the hydrolysis of N-acetylglucosamine-N-acetylmuramic acid copolymer, operates in a highly acidic microenvironment.  相似文献   

9.
The nmr titration curves of chemical shifts versus pH were observed for the protons of various histidine-containing di- and tripeptides. With these results, the macroscopic pKa values and the chemical shifts intrinsic to each ionic species were determined by a computer curve-fitting based on a simple acid dissociation sequence. The pKa value of the imidazole ring in N-acetyl-L -histidine methylamide was assumed to represent the intrinsic (or unperturbed) pKa of the imidazole rings of histidine having peptide linkages at both the CO and NH sides. The pKa values of the imidazole rings observed for most di- and tripeptides were reasonably reproduced by simple calculations using the intrinsic value and the perturbations due to the CO2? and NH3+ groups located at various positions. Some other factors affecting the pKa value of the imidazole ring are also discussed.  相似文献   

10.
Carbapenem-hydrolyzing β-lactamase from Serratia marcescens FHSM4055 was purified 926-fold by means of carboxylmethyl Sephadex C-50, Sephacryl S-200, and Mono S column chromatography. The molecular weight was 30,000 by SDS-PAGE and the isoelectric point was 8.7. The enzyme activity was inhibited by EDTA, and restored by adding zinc (II) or manganese (II). It was inhibited by p-chloromercuribenzoate and iodine as well as the heavy metals, Hg (II), Fe (II), Fe (III), and Cu (II). These results indicate that the enzyme is a metallo-β-lactamase and that the SH-group of only one cysteine residue probably binds to the metal ion, thus contributing to the stability of the enzyme active center. The specific constant (kcat/Km) showed that the enzyme hydrolyzed various β-lactam antibiotics such as carbapenems, cephalosporins, moxalactam, cephamycins, and penicillins other than monobactams. Ampicillin and piperacillin with respective amino- and imino-groups, ceftazidime with a carboxypropyloxyimino-group, and cefclidin with a carbamoylquinuclidine-group were poor substrates among the β-lactam antibiotics other than the monobactams tested. The plots of the turnover number (kcat) against pH for the hydrolysis of cephaloridine gave an asymmetrical curve with the ‘tail’ on the acid side (pK1, 5.9; pK2, 9.0; pK3, 10.8), whereas those of kcat/Km gave a bell-shaped curve (pK1, 5.8; pK2, 9.8). Both results suggest that two ionic forms of an intermediate yield the same product at different rates and that the enzyme is stable under alkaline conditions. Since the N-terminal amino acid sequence of 27 residues determined was consistent with that of the metalloenzyme (Antimicrob. Agents Chemother., 1994, 38: 71-78), the above enzymatic characteristics seem to coincide.  相似文献   

11.
S Shinkai  T Kunitake 《Biopolymers》1976,15(6):1129-1141
The water-soluble poly(1-vinyl-2-ethylimidazole) quaternized with ethyl bromide and lauryl bromide was prepared; lauryl group content, 8.8 mol% (L-9), 28.9 mol% (L-29), and 40.9 mol% (L-41). The λmax value of methyl orange near 460 nm shifted to shorter wavelengths (417–433 nm) in the aqueous solution of L-29 and L-41, and the intrinsic viscosity of L-29 was more than ten times smaller than that of L-9. The rate and equilibrium constants (k? and K) for addition of cyanide ion to the N-substituted 3-carboxamidopyridinium ions were studied at 30°C, where N-substituents employed were n-propyl, n-hexyl, benzyl, 2,6-dichlorobenzyl, and n-lauryl. The kinetic parameters for n-lauryl-3-carboxamidopyridinium were markedly increased in the presence of L-29 and L-41 and with increasing polymer concentrations (84-fold for k? and 7800-fold for K), especially at low ionic strength, whereas L-9 decelerated the addition reaction. These distinct behaviors mean that L-29 and L-41 are classified as micellelike polymers and L-9 as a polyelectrolytelike polymer. However, L-29 depressed the rate of the forward reaction for benzyl-3-carboxamidopyridinium, acting like a simple polyelectrolyte. Therefore, the polymer micelle can provide both the microenvironments characteristic of polyelectrolytes and micelles, depending on the hydrophobicity of substrates.  相似文献   

12.
Research into ion-exchange properties of cell walls isolated from thallus of red seaweed Phyllophora crispa was carried out. Ion-exchange capacity and the swelling coefficient of the red alga cell walls were estimated at various pH values (from 2 to 12) and at constant ionic strength of a solution (10 mM). It was established that behavior of cell walls as ion-exchangers is caused by the presence in their matrix of two types of cation-exchange groups and amino groups. The amount of the functional group of each type was estimated, and the corresponding values of pK a were calculated. It can be assumed that ionogenic groups with pK a ∼5 are carboxyl groups of uronic acids, and ionogenic groups with pK a ∼7.5 are carboxyl groups of the proteins. Intervals of pH in which cation-exchange groups are ionized and can take part in exchange reactions with cations in the environment are defined. It was found that protein was a major component of cell wall polymeric matrix because its content was 36%.  相似文献   

13.
Reaction betwenn molecular oxygen and polystyrene covalently bonded Co(II) protoporphyrin IX complex, which was prepaired by the incorporation of a cobaltous ion into the metal-free porphyrin polymer, was studied in the presence of N-ethylimidazole by measuring visible absorption and electron spin resonance spectra. It was found that the complex forms a monomeric oxygen adduct reversibly at low temperature dependent on oxygen pressure. In the presence of molecular oxygen, a new electron spin resonance signal due to the oxygen complex at giso=2.02 shows no superhyperfine splitting structure in fluid toluene solution even at ?80 °C, but it was observed in frozen toulene glass solution at ?120°C, The oxygen adducts of the complexes between C0(II) protoporphyrin IX dimethyl ester and N-ethylimidazole and copoly(styrene-N-vinylimidazole) showed eight resolved superhyperfine splitting at ?40 and ?60°C, respectively. The polymer covalently bonded Co(II) complex with N-ethylimidazole was oxidized at room temperature under oxygen atmosphere. It was suggested that a Co(II) porphyrin–oxygen adduct with an axial ligand may be oxidised monomolecularly at high temperature.  相似文献   

14.
The KI values for inhibition of thermolysin activity by N-β-phenylpropionyl-aliphatic amino acids (Gly, Ala, Val, Leu, Ile) are correlated by π, the hydrophobic substituent parameter for the amino acid side chain (log KI = ?0.73π ?1.80, correlation coefficient = 0.990). By contrast, the KI values for the corresponding benzyloxycarbonyl amino acids are poorly correlated by π, but show a good correlation with the steric parameter Es(log KI = 0.880Es ? 3.086, correlation coefficient = 0.985). Binding of β-phenylpropionyl-l-alanine is associated with an acidic residue of pK 7.3 and a basic residue of pK 8.0 in the E · I complex, and appears to raise the pK of Glu-143 by 2 units. Binding of benzyloxycarbonyl-Ala and -Phe is associated with an acidic residue of pK 8.0 and two basic residues, both with pK 8.3. Three similar pK values are observed with benzyloxycarbonyl-Phe. These results are interpreted in terms of different modes of binding of β-phenylpropionyl and benzyloxycarbonyl inhibitors.  相似文献   

15.
Protonation equilibria of residues important in the catalytic mechanism of a protein kinase were analyzed on the basis of the Poisson-Boltzmann electrostatic model along with a cluster-based treatment of the multiple titration state problem. Calculations were based upon crystallographic structures of the mammalian cAMP-dependent protein kinase, one representing the so called closed form of the enzyme and the other representing an open conformation. It was predicted that at pH 7 the preferred form of the phosphate group at the catalytically essential threonine 197 (P-Thr197) in the closed form is dianionic, whereas in the open form a monoanionic ionization state is preferred. This dianionic state of P-Thr197, in the closed form, is stabilized by interactions with ionizable residues His87, Arg165, and Lys189. Our calculations predict that the hydroxyl of the Ser residue in the peptide substrate is very difficult to ionize, both in the closed and open structures of the complex. Also, the supposed catalytic base, Asp166, does not seem to have a pK a appropriate to remove the hydroxyl group proton of the peptide substrate. However, when Ser of the peptide substrate is forced to remain ionized, the predicted pK a of Asp166 increases strongly, which suggests that the Asp residue is a likely candidate to attract the proton if the Ser residue becomes deprotonated, possibly during some structural change preceding formation of the transition state. Finally, in accord with suggestions made on the basis of the pH-dependence of kinase kinetics, our calculations predict that Glu230 and His87 are the residues responsible for the molecular pK a values of 6.2 and 8.5, observed in the experiment. Received: 19 October 1998 / Revised version: 12 April 1999 / Accepted: 15 April 1999  相似文献   

16.
The rapid reaction of diisopropylfluorophosphate with a tyrosine residue of human serum albumin at 0.02 m ionic strength involves prior rapid reversible binding characterized by a dissociation constant of 3.6 × 10?3m and an apparent pKa of 8.3. The rapid reaction of p-nitrophenyl acetate with human serum albumin (G. E. Means and M. L. Bender, 1975, Biochemistry14, 4989–4994) appears to involve the same tyrosine residue and is thus stoichiometrically inhibited by prior reaction with diisopropylfluorophosphate. Both reactions are strongly inhibited by decanoate anion, strongly retarded at higher ionic strength, and reflect strong rapidly reversible binding and abnormally low tyrosine pKa values. This reactive tyrosine residue thus appears to be located in a primary binding site for small apolar anions and to be closely associated with several cationic groups.  相似文献   

17.
The effect of pH on the kinetic parameters for the chloroperoxidase-catalyzed N-demethylation of N,N-dimethylaniline supported by ethyl hydroperoxide was investigated from pH 3.0 to 7.0. Chloroperoxidase was found to be stable throughout the pH range studied. Initial rate conditions were determined throughout the pH range. The Vmax for the demethylation reaction exhibited a pH optimum at approximately 4.5. The Km for N,N-dimethylaniline increased with decreasing pH, while the Km for ethyl hydroperoxide varied in a manner paralleling Vmax. Comparison of the VmaxKm values for N,N-dimethylaniline and ethyl hydroperoxide indicated that the interaction of N,N-dimethylaniline with chloroperoxidase compound I was rate-limiting below pH 4.5, while compound I formation was rate-limiting above pH 4.5. The log of the VmaxKm for ethyl hydroperoxide was independent of pH, indicating that chloroperoxidase compound I formation is not affected by ionizations in this pH range. The plot of the log of the VmaxKm for N,N-dimethylaniline versus pH indicated an ionization on compound I with a pK of approximately 6.8. The plot of the log of the Vmax versus pH indicated an ionization on the compound I-N,N-dimethylaniline complex, with a pK of approximately 3.1. The results show that chloroperoxidase can demethylate both the protonated and neutral forms of N,N-dimethylaniline (pK approximately 5.0), suggesting that hydrophobic binding of the arylamine substrate is more important in catalysis than ionic bonding of the amine moiety. For optimal catalysis, a residue in the chloroperoxidase compound I-N,N-dimethylaniline complex with a pK of approximately 3.1 must be deprotonated, while a residue in compound I with a pK of approximately 6.8 must be protonated.  相似文献   

18.
Described herein are proton nmr experiments on chemically modified derivatives of ribonuclease A designed to elucidate the origin of an exchangeable resonance, assigned previously to a histidine ring N proton that titrates between 11 to 13 ppm with a pKa of 6.1 in H2O solution. Histidines 48 and 105, which are distant from the active site, are eliminated as candidates for this resonance from inhibitor binding studies on the enzyme in acetate–water solutions. This exchangeable resonance titrates with modified pKa's and constant area over the above pH range in His-119-N1-carboxymethylated-RNase A and des-(121–124)-RNase A, thus eliminating the imidazole N3 proton in the His 119-Asp 121 hydrogen bond. In His-12-N1-carboxymethylated-RNase A, this resonance is also observable, but broadens on raising the pH above 7 and at elevated temperatures above neutrality. It exhibits a pH-independent chemical shift characteristic of the protonated state of histidine. On the basis of these findings, this exchangeable resonance, designated a, is assigned to the imidazole N1 proton of His 12, which is hydrogen-bonded to the carbonyl oxygen of Thr 45 in the crystal.  相似文献   

19.
Temocapril is a prodrug whose hydrolysis by carboxylesterase 1 (CES1) yields the active ACE inhibitor temocaprilat. This molecular‐dynamics (MD) study uses a resolved structure of the human CES1 (hCES1) to investigate some mechanistic details of temocapril hydrolysis. The ionization constants of temocapril (pK1 and pK3) and temocaprilat (pK1, pK2, and pK3) were determined experimentally and computationally using commercial algorithms. The constants so obtained were in good agreement and revealed that temocapril exists mainly in three ionic forms (a cation, a zwitterion, and an anion), whereas temocaprilat exists in four major ionic forms (a cation, a zwitterion, an anion, and a dianion). All these ionic forms were used as ligands in 5‐ns MS simulations. While the cationic and zwitterionic forms of temocapril were involved in an ion‐pair bond with Glu255 suggestive of an inhibitor behavior, the anionic form remained in a productive interaction with the catalytic center. As for temocaprilat, its cation appeared trapped by Glu255, while its zwitterion and anion made a slow departure from the catalytic site and a partial egress from the protein. Only its dianion was effectively removed from the catalytic site and attracted to the protein surface by Lys residues. A detailed mechanism of product egress emerges from the simulations.  相似文献   

20.
NAD-dependent aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.-) from Avena shoots was purified by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q, and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE. SDS–PAGE yielded a single band at a molecular mass of 55 kDa. IEF studies showed a band with a pI value of 5.3. In contrast to AMADHs from other species, the TSK-GEL chromatography showed that Avena AMADH exists as a monomer in the native state. The purified enzyme catalyzed the oxidations of 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL) N-(3-aminopropyl)-4-aminobutyraldehyde (APBAL), and 4-guanidinobutyraldehyde (GBAL), but not of betaine aldehyde or indoleacetaldehyde. The K m values for APAL, ABAL, and GBAL were 1.5×10–6, 2.2×10–6, and 1.3×10–5 M, respectively. Although N-terminal amino acid sequence of Avena AMADH could not be determined due to a modification of the amino residue, the sequence of the fragment of AMADH cleaved by V8 protease showed greater similarity to the barley BADH than to the pea AMADH. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号