首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We formulate infection-age structured susceptible-infective-removed (SIR) models with behavior change or treatment of infections. Individuals change their behavior or have treatment after they are infected. Using infection age as a continuous variable, and dividing infectives into discrete groups with different infection stages, respectively, we formulate a partial differential equation model and an ordinary differential equation model with behavior change or treatment. We derive explicit formulas for the reproductive number by linear stability analysis of the infection-free equilibrium, and explicit formulas for the unique endemic equilibrium, when it exists, for both models. These formulas provide mathematical theoretical frameworks for analysis of impact of behavior change or treatment of infection to the transmission dynamics of infectious diseases. We study several special cases and provide sensitivity analysis for the reproductive numbers with respect to model parameters based on those formulas.  相似文献   

2.
Differential susceptibility epidemic models   总被引:3,自引:0,他引:3  
We formulate compartmental differential susceptibility (DS) susceptible-infective-removed (SIR) models by dividing the susceptible population into multiple subgroups according to the susceptibility of individuals in each group. We analyze the impact of disease-induced mortality in the situations where the number of contacts per individual is either constant or proportional to the total population. We derive an explicit formula for the reproductive number of infection for each model by investigating the local stability of the infection-free equilibrium. We further prove that the infection-free equilibrium of each model is globally asymptotically stable by qualitative analysis of the dynamics of the model system and by utilizing an appropriately chosen Liapunov function. We show that if the reproductive number is greater than one, then there exists a unique endemic equilibrium for all of the DS models studied in this paper. We prove that the endemic equilibrium is locally asymptotically stable for the models with no disease-induced mortality and the models with contact numbers proportional to the total population. We also provide sufficient conditions for the stability of the endemic equilibrium for other situations. We briefly discuss applications of the DS models to optimal vaccine strategies and the connections between the DS models and predator-prey models with multiple prey populations or host-parasitic interaction models with multiple hosts are also given.This research was partially supported by the Department of Energy under contracts W-7405-ENG-36 and the Applied Mathematical Sciences Program KC-07-01-01.  相似文献   

3.
In this paper, an SEIS epidemic model is proposed to study the effect of transport-related infection on the spread and control of infectious disease. New result implies that traveling of the exposed (means exposed but not yet infectious) individuals can bring disease from one region to other regions even if the infectious individuals are inhibited from traveling among regions. It is shown that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, our analysis shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. This suggests that it is very essential to strengthen restrictions of passengers once we know infectious diseases appeared.  相似文献   

4.
This paper is concerned with the qualitative analysis of two models [S. Bonhoeffer, M. Lipsitch, B.R. Levin, Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA 94 (1997) 12106] for different treatment protocols to prevent antibiotic resistance. Detailed qualitative analysis about the local or global stability of the equilibria of both models is carried out in term of the basic reproduction number R0. For the model with a single antibiotic therapy, we show that if R0 < 1, then the disease-free equilibrium is globally asymptotically stable; if R0 > 1, then the disease-endemic equilibrium is globally asymptotically stable. For the model with multiple antibiotic therapies, stabilities of various equilibria are analyzed and combining treatment is shown better than cycling treatment. Numerical simulations are performed to show that the dynamical properties depend intimately upon the parameters.  相似文献   

5.
We perform sensitivity analyses on a mathematical model of malaria transmission to determine the relative importance of model parameters to disease transmission and prevalence. We compile two sets of baseline parameter values: one for areas of high transmission and one for low transmission. We compute sensitivity indices of the reproductive number (which measures initial disease transmission) and the endemic equilibrium point (which measures disease prevalence) to the parameters at the baseline values. We find that in areas of low transmission, the reproductive number and the equilibrium proportion of infectious humans are most sensitive to the mosquito biting rate. In areas of high transmission, the reproductive number is again most sensitive to the mosquito biting rate, but the equilibrium proportion of infectious humans is most sensitive to the human recovery rate. This suggests strategies that target the mosquito biting rate (such as the use of insecticide-treated bed nets and indoor residual spraying) and those that target the human recovery rate (such as the prompt diagnosis and treatment of infectious individuals) can be successful in controlling malaria.  相似文献   

6.
具有外来感染者和急慢性阶段的流行病模型的动力学分析   总被引:3,自引:0,他引:3  
建立和研究了一类具有外来感染者和急慢性阶段的流行病模型,我们假设单位时间内有常数量的外来感染者进入所研究地区,因而得到的模型仅有一个地方病平衡位置.我们证明了当α<pμ时,地方病平衡位置是全局渐近稳定的.  相似文献   

7.
We study an SIR epidemic model with a variable host population size. We prove that if the model parameters satisfy certain inequalities then competition between n pathogens for a single host leads to exclusion of all pathogens except the one with the largest basic reproduction number. It is shown that a knowledge of the basic reproduction numbers is necessary but not sufficient for determining competitive exclusion. Numerical results illustrate that these inequalities are sufficient but not necessary for competitive exclusion to occur. In addition, an example is given which shows that if such inequalities are not satisfied then coexistence may occur.  相似文献   

8.
We study a system of partial differential equations which models the disease transmission dynamics of schistosomiasis. The model incorporates both the definitive human hosts and the intermediate snail hosts. The human hosts have an age-dependent infection rate and the snail hosts have an infection-age-dependent cercaria releasing rate. The parasite reproduction number R is computed and is shown to determine the disease dynamics. Stability results are obtained via both analytic and numerical studies. Results of the model are used to discuss age-targeted drug treatment strategies for humans. Sensitivity and uncertainty analysis is conducted to determine the role of various parameters on the variation of R. The effects of various drug treatment programs on disease control are compared in terms of both R and the mean parasite load within the human hosts.  相似文献   

9.
10.
Transportation amongst cities is found as one of the main factors which affect the outbreak of diseases. To understand the effect of transport-related infection on disease spread, an SEIRS (Susceptible, Exposed, Infectious, Recovered) epidemic model for two cities is formulated and analyzed. The epidemiological threshold, known as the basic reproduction number, of the model is derived. If the basic reproduction number is below unity, the disease-free equilibrium is locally asymptotically stable. Thus, the disease can be eradicated from the community. There exists an endemic equilibrium which is locally asymptotically stable if the reproduction number is larger than unity. This means that the disease will persist within the community. The results show that transportation among regions will change the disease dynamics and break infection out even if infectious diseases will go to extinction in each isolated region without transport-related infection. In addition, the result shows that transport-related infection intensifies the disease spread if infectious diseases break out to cause an endemic situation in each region, in the sense of that both the absolute and relative size of patients increase. Further, the formulated model is applied to the real data of SARS outbreak in 2003 to study the transmission of disease during the movement between two regions. The results show that the transport-related infection is effected to the number of infected individuals and the duration of outbreak in such the way that the disease becomes more endemic due to the movement between two cities. This study can be helpful in providing the information to public health authorities and policy maker to reduce spreading disease when its occurs.  相似文献   

11.
Zoonotic visceral leishmaniasis (ZVL) is a serious neglected tropical disease that is endemic in 98 countries. ZVL is primarily transmitted via a sand fly vector. In the United States, it is enzootic in some canine populations; it is transmitted from infectious mother to pup transplacentally, and vector-borne transmission is absent. This absence affords a unique opportunity to study (1) vertical transmission dynamics in dogs and (2) the importance of vertical transmission in maintaining an infectious reservoir in the presence of a vector. In this paper, we present Bayesian compartmental models and reproductive number formulations to examine (1) and (2), providing a mechanism to plan and evaluate interventions in regions where both transmission modes are present. First, we propose an individual-level susceptible, infectious, removed (SIR) model to study the effect of maternal infection status during pregnancy on pup infection progression. We provide evidence that pups born to diagnostically positive mothers during pregnancy are more likely to become diagnostically positive both earlier in life, and at some point during their lifetime, than those born to diagnostically negative mothers. Second, we propose a population-level SIR model to study the impact of a vertically maintained reservoir on propagating infection in a naive canine population through emergent vector transmission using simulation studies. We also present reproductive numbers to quantify contributions of vertically infected and vector-infected dogs to maintaining infection in the population. We show that a vertically maintained canine reservoir can propagate infection in a theoretical naive population in the presence of a vector.  相似文献   

12.
Mathematical modelling is playing an increasing role in developing an understanding of the dynamics of communicable disease and assisting the construction and implementation of intervention strategies. The threat of novel emergent pathogens in human and animal hosts implies the requirement for methods that can robustly estimate epidemiological parameters and provide forecasts. Here, a technique called variational data assimilation is introduced as a means of optimally melding dynamic epidemic models with epidemiological observations and data to provide forecasts and parameter estimates. Using data from a simulated epidemic process the method is used to estimate the start time of an epidemic, to provide a forecast of future epidemic behaviour and estimate the basic reproductive ratio. A feature of the method is that it uses a basic continuous-time SIR model, which is often the first point of departure for epidemiological modelling during the early stages of an outbreak. The method is illustrated by application to data gathered during an outbreak of influenza in a school environment.  相似文献   

13.
Compartmental models for influenza that include control by vaccination and antiviral treatment are formulated. Analytic expressions for the basic reproduction number, control reproduction number and the final size of the epidemic are derived for this general class of disease transmission models. Sensitivity and uncertainty analyses of the dependence of the control reproduction number on the parameters of the model give a comparison of the various intervention strategies. Numerical computations of the deterministic models are compared with those of recent stochastic simulation influenza models. Predictions of the deterministic compartmental models are in general agreement with those of the stochastic simulation models.  相似文献   

14.
Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change.  相似文献   

15.
The proliferation of algal bloom in water bodies due to the enhanced concentration of nutrient inflow is becoming a global issue. A prime reason behind this aquatic catastrophe is agricultural runoff, which carries a large amount of nutrients that make the lakes more fertile and cause algal blooms. The only solution to this problem is curtailing the nutrient loading through agricultural runoff. This could be achieved by raising awareness among farmers to minimize the use of fertilizers in their farms. In view of this, in this paper, we propose a mathematical model to study the effect of awareness among the farmers of the mitigation of algal bloom in a lake. The growth rate of awareness among the farmers is assumed to be proportional to the density of algae in the lake. It is further assumed that the presence of awareness among the farmers reduces the inflow rate of nutrients through agricultural runoff and helps to remove the detritus by cleaning the bottom of the lake. The results evoke that raising awareness among farmers may be a plausible factor for the mitigation of algal bloom in the lake. Numerical simulations identify the most critical parameters that influence the blooms and provide indications to possibly mitigate it.  相似文献   

16.
  1. Invasive pests pose a great threat to forest, woodland, and urban tree ecosystems. The oak processionary moth (OPM) is a destructive pest of oak trees, first reported in the UK in 2006. Despite great efforts to contain the outbreak within the original infested area of South‐East England, OPM continues to spread.
  2. Here, we analyze data consisting of the numbers of OPM nests removed each year from two parks in London between 2013 and 2020. Using a state‐of‐the‐art Bayesian inference scheme, we estimate the parameters for a stochastic compartmental SIR (susceptible, infested, and removed) model with a time‐varying infestation rate to describe the spread of OPM.
  3. We find that the infestation rate and subsequent basic reproduction number have remained constant since 2013 (with R0 between one and two). This shows further controls must be taken to reduce R0 below one and stop the advance of OPM into other areas of England.
  4. Synthesis. Our findings demonstrate the applicability of the SIR model to describing OPM spread and show that further controls are needed to reduce the infestation rate. The proposed statistical methodology is a powerful tool to explore the nature of a time‐varying infestation rate, applicable to other partially observed time series epidemic data.
  相似文献   

17.
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.  相似文献   

18.
Land‐use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land‐use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970–2000 period and projections of other global and regional land change models.  相似文献   

19.
Concern over rapid global changes and the potential for interactions among multiple threats are prompting scientists to combine multiple modelling approaches to understand impacts on biodiversity. A relatively recent development is the combination of species distribution models, land‐use change predictions, and dynamic population models to predict the relative and combined impacts of climate change, land‐use change, and altered disturbance regimes on species' extinction risk. Each modelling component introduces its own source of uncertainty through different parameters and assumptions, which, when combined, can result in compounded uncertainty that can have major implications for management. Although some uncertainty analyses have been conducted separately on various model components – such as climate predictions, species distribution models, land‐use change predictions, and population models – a unified sensitivity analysis comparing various sources of uncertainty in combined modelling approaches is needed to identify the most influential and problematic assumptions. We estimated the sensitivities of long‐run population predictions to different ecological assumptions and parameter settings for a rare and endangered annual plant species (Acanthomintha ilicifolia, or San Diego thornmint). Uncertainty about habitat suitability predictions, due to the choice of species distribution model, contributed most to variation in predictions about long‐run populations.  相似文献   

20.
In this paper, we propose a test procedure to detect change points of multidimensional autoregressive processes. The considered process differs from typical applied spatial autoregressive processes in that it is assumed to evolve from a predefined center into every dimension. Additionally, structural breaks in the process can occur at a certain distance from the predefined center. The main aim of this paper is to detect such spatial changes. In particular, we focus on shifts in the mean and the autoregressive parameter. The proposed test procedure is based on the likelihood‐ratio approach. Eventually, the goodness‐of‐fit values of the estimators are compared for different shifts. Moreover, the empirical distribution of the test statistic of the likelihood‐ratio test is obtained via Monte Carlo simulations. We show that the generalized Gumbel distribution seems to be a suitable limiting distribution of the proposed test statistic. Finally, we discuss the detection of lung cancer in computed tomography scans and illustrate the proposed test procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号