首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preceding study analysed how the topology of network motifs affects the overall rate of the underlying biochemical processes. Surprisingly, it was shown that topologically non-isomorphic motifs can still be isodynamic in the sense that they exhibit the exact same performance rate. Because of the high prevalence of feed-forward functional modules in biological networks, one may hypothesize that evolution tends to favour motifs with faster dynamics. As a step towards ranking the efficiency of feed-forward network motifs, we use a linear flow model to prove theorems establishing that certain classes of motifs are isodynamic. In partitioning the class of all motifs on n nodes into equivalence classes based upon their dynamics, we establish a basis for comparing the efficiency/performance rates of different motifs. The potential biological importance of the theorems is briefly discussed and is the subject of an ongoing large-scale project.  相似文献   

2.
Systems theory and cell biology have enjoyed a long relationship that has received renewed interest in recent years in the context of systems biology. The term 'systems' in systems biology comes from systems theory or dynamic systems theory: systems biology is defined through the application of systems- and signal-oriented approaches for an understanding of inter- and intra-cellular dynamic processes. The aim of the present text is to review the systems and control perspective of dynamic systems. The biologist's conceptual framework for representing the variables of a biochemical reaction network, and for describing their relationships, are pathway maps. A principal goal of systems biology is to turn these static maps into dynamic models, which can provide insight into the temporal evolution of biochemical reaction networks. Towards this end, we review the case for differential equation models as a 'natural' representation of causal entailment in pathways. Block-diagrams, commonly used in the engineering sciences, are introduced and compared to pathway maps. The stimulus-response representation of a molecular system is a necessary condition for an understanding of dynamic interactions among the components that make up a pathway. Using simple examples, we show how biochemical reactions are modelled in the dynamic systems framework and visualized using block-diagrams.  相似文献   

3.

Background  

Network motifs are recurrent interaction patterns, which are significantly more often encountered in biological interaction graphs than expected from random nets. Their existence raises questions concerning their emergence and functional capacities. In this context, it has been shown that feed forward loops (FFL) composed of three genes are capable of processing external signals by responding in a very specific, robust manner, either accelerating or delaying responses. Early studies suggested a one-to-one mapping between topology and dynamics but such view has been repeatedly questioned. The FFL's function has been attributed to this specific response. A general response analysis is difficult, because one is dealing with the dynamical trajectory of a system towards a new regime in response to external signals.  相似文献   

4.
    
Nonlinear (systems of) ordinary differential equations (ODEs) are common tools in the analysis of complex one‐dimensional dynamic systems. We propose a smoothing approach regularized by a quasilinearized ODE‐based penalty. Within the quasilinearized spline‐based framework, the estimation reduces to a conditionally linear problem for the optimization of the spline coefficients. Furthermore, standard ODE compliance parameter(s) selection criteria are applicable. We evaluate the performances of the proposed strategy through simulated and real data examples. Simulation studies suggest that the proposed procedure ensures more accurate estimates than standard nonlinear least squares approaches when the state (initial and/or boundary) conditions are not known.  相似文献   

5.
    
The role of spatial arrangements on the spread and management strategies of a cholera epidemic is investigated. We consider the effect of human and pathogen movement on optimal vaccination strategies. A metapopulation model is used, incorporating a susceptible–infected–recovered system of differential equations coupled with an equation modelling the concentration of Vibrio cholerae in an aquatic reservoir. The model compared spatial arrangements and varying scenarios to draw conclusions on how to effectively manage outbreaks. The work is motivated by the 2010 cholera outbreak in Haiti. Results give guidance for vaccination strategies in response to an outbreak.  相似文献   

6.
The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.  相似文献   

7.
Gagneur J  Casari G 《FEBS letters》2005,579(8):1867-1871
Adaptation and behavior are characteristics of life which are fundamentally dynamic. If we want to model the living cell we have to describe it as a dynamic system. Typical dynamic models are based on quantitative differential equations requiring very detailed kinetic knowledge. Alternative modeling techniques for less fine-grained information are better suited to available functional genomics data. As such, constraint-based techniques and qualitative modeling have proven themselves to be valid approaches in cell biology. These approaches offer formal support to check the consistency of molecular networks against phenotypic observations in the light of dynamic systems.  相似文献   

8.
The kinetics of proteins involved in ion transfer, sequestration and binding in cardiac cells can be modelled to construct a model of the electrical activity of isolated cardiac cells as a system of ordinary differential equations. These cell models may be incorporated into tissue models, which, when combined with histology and anatomy, form virtual tissues. The effects of changes in specific protein expression, or changes in protein kinetics, produced by mutations or pharmacological agents, can be simulated using these tissue models and used to account for the whole organ effects of changes in specific ion-transport protein activity.  相似文献   

9.
Summary A world-wide system for classifying brooks, streams, and small rivers is proposed, using the following criteria: width, flow, current speed, substrate, summer temperatures, winter temperatures, turbidity, total dissolved organic matter, total dissolved inorganic matter, water hardness, dissolved oxygen, rooted aquatic plants, streamside vegetation. Some of these criteria have much greater biological implications than others. It is contended that widely separated lotic habitats that are similar in the above features have biotas consisting of ecologically similar and parallel clusters of species. There are, nevertheless, many kinds of atypical polluted and unpolluted lotic habitats that cannot be classified with respect to these criteria.Contribution No. 63, Limnology Laboratory, University of Colorado.  相似文献   

10.
11.
12.
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Although sequence motifs have been studied in alpha-helical membrane proteins and have been shown to play important roles in their assembly, it is not clear whether over-represented motifs and under-represented anti-motifs exist in beta-barrel membrane proteins. We have developed probabilistic models to identify sequence motifs of residue pairs on the same strand separated by an arbitrary number of residues. A rigorous statistical model is essential for this study because of the difficulty associated with the short length of the strands and the small amount of structural data. By comparing to the null model of exhaustive permutation of residues within the same beta-strand, propensity values of sequence patterns of two residues and p-values measuring statistical significance are calculated exactly by several analytical formulae we have developed or by enumeration. We find that there are characteristic sequence motifs and antimotifs in transmembrane (TM) beta-strands. The amino acid Tyr plays an important role in several such motifs. We find a general dichotomy consisting of favorable Aliphatic-Tyr sequence motifs and unfavorable Tyr-Aliphatic antimotifs. Tyr is also part of a terminal motif, YxF, which is likely to be important for chaperone binding. Our results also suggest several experiments that can help to elucidate the mechanisms of in vitro and in vivo folding of beta-barrel membrane proteins.  相似文献   

13.
Summary The assembly of helical and β-sheet peptide blocks containing reactive chain ends results in highly branched chain architectures (‘locked-in folds’) mimicking native tertiary structures. This molecular kit strategy allows to bypass the protein folding problem in protein de novo design and gives access to protein mimetics of high thermodynamic stability. The validity of this concept is exemplified for the design and synthesis of locked-in folds mimicking the zinc finger and MHC folding motifs.  相似文献   

14.
It has been demonstrated that ubiquitin-conjugated proteins were accumulated by ectopically-expressed S5a as well as the ubiquitin-interacting motifs of S5a (S5a-UIMs). In this study, we further found that free S5a-UIMs stabilized only a subset of proteasomal substrates including p53, c-Fos, c-Jun, and p27 but not β-catenin, p15, and ornithine decarboxylase. Both S5a-UIMs and epoxomicin inhibited the proliferation of A549 lung cancer cells but arrest at the different stages of cell cycle. Together, our results suggest a potential role of S5a-UIMs as an upstream proteasomal inhibitor by blocking the subset of substrates from delivery to the 26S proteasome.  相似文献   

15.
16.
Abstract

In addition to the sulfonamides and their isosteres, recently novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) which act by binding to the metal ion from the active site were discovered. Based on the X-ray crystal structure of the CA II–trithiocarbonate adduct, dithiocarbamates, xanthates and thioxanthates were shown to potently inhibit α- and β-CAs. The hydroxamates constitute another class of recently studied CAIs both against mammalian and protozoan enzymes. Another chemotype for which CA inhibitory properties were recently reported is the salicylaldoxime scaffold. X-ray crystal structures were reported for CA II complexed with dithiocarbamates and hydroxamates, whereas the xanthates and salicylaldoximes were investigated by kinetic measurements and docking studies. The dithiocarbamates and the xanthates showed potent antiglaucoma activity in animal models of the disease whereas some hydroxamates inhibited the growth of Trypanosoma cruzii probably by inhibiting the protozoan CA.  相似文献   

17.
A ubiquitous feature of neurotransmitter transporters is the presence of short C-terminal PDZ binding motifs acting as important trafficking elements. Depending on their very C-terminal sequences, PDZ binding motifs are usually divided into at least three groups; however this classification has recently been questioned. To introduce a 3D aspect into transporter’s PDZ motif similarities, we compared their interactions with the natural collection of all 13 PDZ domains of the largest PDZ binding protein MUPP1. The GABA, glycine and serotonin transporters showed unique binding preferences scattered over one or several MUPP1 domains. On the contrary, the dopamine and norepinephrine transporter PDZ motifs did not show any significant affinity to MUPP1 domains. Interestingly, despite their terminal sequence diversity all three GABA transporter PDZ motifs interacted with MUPP1 domain 7. These results indicate that similarities in binding schemes of individual transporter groups might exist. Results also suggest the existence of variable PDZ binding modes, allowing several transporters to interact with identical PDZ domains and potentially share interaction partners in vivo.  相似文献   

18.
We have examined conserved protein motifs in the non-coding, intergenic regions ("pseudomotif patterns") and surveyed their occurrence in the fly, worm, yeast and human genomes (chromosomes 21 and 22 only). To identify these patterns, we masked out annotated genes, pseudogenes and repeat regions from the raw genomic sequence and then compared the remaining sequence, in six-frame translation, against 1319 patterns from the PROSITE database. For each pseudomotif pattern, the absolute number of occurrences is not very informative unless compared against a statistical expectation; consequently, we calculated the expected occurrence of each pattern using a Poisson model and verified this with simulations. Using a p-value cut-off of 0.01, we found 67 pseudomotif patterns over-represented in fly intergenic regions, 34 in worm, 21 in human and six in yeast. These include the zinc finger, leucine zipper, nucleotide-binding motif and EGF domain. Many of the over-represented patterns were common to two or more organisms, but there were a few that were unique to specific ones. Furthermore, we found more over-represented patterns in the fly than in the worm, although the fly has fewer pseudogenes. This puzzling observation can be explained by a higher deletion rate in the fly genome. We also surveyed under-represented patterns, finding 23 in the fly, 12 in the worm, 18 in human and two in yeast. If intergenic sequences were truly random, we would expect an equal number of over and under-represented patterns. The fact that for each organism the number of over-represented patterns is greater than the number of under-represented ones implies that a fraction of the intergenic regions consist of ancient protein fragments that, due to accumulated disablements, have become unrecognizable by conventional techniques for gene and pseudogene identification. Moreover, we find that in aggregate the over-represented pseudomotif patterns occupy a substantial fraction of the intergenic regions. Further information is available at http://pseudogene.org  相似文献   

19.
Our algorithm predicts short linear functional motifs in proteins using only sequence information. Statistical models for short linear functional motifs in proteins are built using the database of short sequence fragments taken from proteins in the current release of the Swiss-Prot database. Those segments are confirmed by experiments to have single-residue post-translational modification. The sensitivities of the classification for various types of short linear motifs are in the range of 70%. The query protein sequence is dissected into short overlapping fragments. All segments are represented as vectors. Each vector is then classified by a machine learning algorithm (Support Vector Machine) as potentially modifiable or not. The resulting list of plausible post-translational sites in the query protein is returned to the user. We also present a study of the human protein kinase C family as a biological application of our method.  相似文献   

20.
A conserved amino acid sequence motif was identified in four distinct groups of enzymes that catalyze the hydrolysis of the α–β phosphate bond of ATP, namely GMP synthetases, argininosuccinate synthetases, asparagine synthetases, and ATP sulfurylases. The motif is also present in Rhodobacter capsulata AdgA, Escherichia coli NtrL, and Bacillus subtilis OutB, for which no enzymatic activities are currently known. The observed pattern of amino acid residue conservation and predicted secondary structures suggest that this motif may be a modified version of the P-loop of nucleotide binding domains, and that it is likely to be involved in phosphate binding. We call it PP-motif, since it appears to be a part of a previously uncharacterized ATP pyrophophatase domain. ATP sulfurylases, NtrL, and OutB consist of this domain alone. In other proteins, the pyrophosphatase domain is associated with amidotransferase domains (type I or type II), a putative citrulline-aspartate ligase domain or a nitrilase/amidase domain. Unexpectedly, statistically significant overall sequence similarity was found between ATP sulfurylase and 3′-phosphoadenosine 5′-phosphosulfate (PAPS) reductase, another protein of the sulfate activation pathway. The PP-motif is strongly modified in PAPS reductases, but they share with ATP sulfurylases another conserved motif which might be involved in sulfate binding. We propose that PAPS reductases may have evolved from ATP sulfurylases; the evolution of the new enzymatic function appears to be accompanied by a switch of the strongest functional constraint from the PP-motif to the putative sulfate-binding motif. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号