首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
Functional mapping is a statistical method for mapping quantitative trait loci (QTLs) that regulate the dynamic pattern of a biological trait. This method integrates mathematical aspects of biological complexity into a mixture model for genetic mapping and tests the genetic effects of QTLs by comparing genotype-specific curve parameters. As a way of quantitatively specifying the dynamic behavior of a system, differential equations have proven to be powerful for modeling and unraveling the biochemical, molecular, and cellular mechanisms of a biological process, such as biological rhythms. The equipment of functional mapping with biologically meaningful differential equations provides new insights into the genetic control of any dynamic processes. We formulate a new functional mapping framework for a dynamic biological rhythm by incorporating a group of ordinary differential equations (ODE). The Runge-Kutta fourth order algorithm was implemented to estimate the parameters that define the system of ODE. The new model will find its implications for understanding the interplay between gene interactions and developmental pathways in complex biological rhythms.  相似文献   

2.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

3.
Human height is an important trait from biological and social perspectives. Genes have been widely recognized to be involved in human body growth, but their detailed controlling mechanisms are poorly understood. Here, we present a computational model for functional mapping of quantitative trait loci (QTLs) that control trajectories of human height growth through an interactive network. The model integrates mathematical equations of human growth curves into the mixture model-based functional mapping framework, allowing the identification and mapping of individual QTLs responsible for the developmental pattern of human growth. The model was derived on a random sample of subjects from a natural population, for each of which molecular markers within candidate genes or throughout the entire genome are typed and height data from childhood to adulthood are collected. A series of testable hypotheses are formulated about the genetic control of developmental timing and duration at different stages. The model was used to characterize epistatic QTLs for height growth hidden in 548 Japanese girls which is a semi-real data set with simulated the marker genotypes. With an increasing availability of genetic polymorphic data, the model will have great implications for probing the genetic and developmental mechanisms of human body growth and its associated diseases.  相似文献   

4.
The cancer incidence increases with age. This epidemiological pattern of cancer incidence can be attributed to molecular and cellular processes of individual subjects. Also, the incidence of cancer with ages can be controlled by genes. Here we present a dynamic statistical model for explaining the epidemiological pattern of cancer incidence based on individual genes that regulate cancer formation and progression. We incorporate the mathematical equations of age-specific cancer incidence into a framework for functional mapping aimed at identifying quantitative trait loci (QTLs) for dynamic changes of a complex trait. The mathematical parameters that specify differences in the curve of cancer incidence among QTL genotypes are estimated within the context of maximum likelihood. The model provides testable quantitative hypotheses about the initiation and duration of genetic expression for QTLs involved in cancer progression. Computer simulation was used to examine the statistical behavior of the model. The model can be used as a tool for explaining the epidemiological pattern of cancer incidence.  相似文献   

5.
The dynamic pattern of viral load in a patient’s body critically depends on the host’s genes. For this reason, the identification of those genes responsible for virus dynamics, although difficult, is of fundamental importance to design an optimal drug therapy based on patients’ genetic makeup. Here, we present a differential equation (DE) model for characterizing specific genes or quantitative trait loci (QTLs) that affect viral load trajectories within the framework of a dynamic system. The model is formulated with the principle of functional mapping, originally derived to map dynamic QTLs, and implemented with a Markov chain process. The DE-integrated model enhances the mathematical robustness of functional mapping, its quantitative prediction about the temporal pattern of genetic expression, and therefore its practical utilization and effectiveness for gene discovery in clinical settings. The model was used to analyze simulated data for viral dynamics, aimed to investigate its statistical properties and validate its usefulness. With an increasing availability of genetic polymorphic data, the model will have great implications for probing the molecular genetic mechanism of virus dynamics and disease progression.  相似文献   

6.
The developmental variation in stem height with respect to stem diameter is related to a broad range of ecological and evolutionary phenomena in trees, but the underlying genetic basis of this variation remains elusive. We implement a dynamic statistical model, functional mapping, to formulate a general procedure for the computational identification of quantitative trait loci (QTLs) that control stem height–diameter allometry during development. Functional mapping integrates the biological principles underlying trait formation and development into the association analysis of DNA genotype and endpoint phenotype, thus providing an incentive for understanding the mechanistic interplay between genes and development. Built on the basic tenet of functional mapping, we explore two core ecological scenarios of how stem height and stem diameter covary in response to environmental stimuli: (i) trees pioneer sunlit space by allocating more growth to stem height than diameter and (ii) trees maintain their competitive advantage through an inverse pattern. The model is equipped to characterize ‘pioneering’ QTLs (piQTLs) and ‘maintaining’ QTLs (miQTLs) which modulate these two ecological scenarios, respectively. In a practical application to a mapping population of full‐sib hybrids derived from two Populus species, the model has well proven its versatility by identifying several piQTLs that promote height growth at a cost of diameter growth and several miQTLs that benefit radial growth at a cost of height growth. Judicious application of functional mapping may lead to improved strategies for studying the genetic control of the formation mechanisms underlying trade‐offs among quantities of assimilates allocated to different growth parts.  相似文献   

7.
Cells with the same genotype growing under the same conditions can show different phenotypes, which is known as “population heterogeneity”. The heterogeneity of hematopoietic progenitor cells has an effect on their differentiation potential and lineage choices. However, the genetic mechanisms governing population heterogeneity remain unclear. Here, we present a statistical model for mapping the quantitative trait locus (QTL) that affects hematopoietic cell heterogeneity. This strategy, termed systems mapping, integrates a system of differential equations into the framework for systems mapping, allowing hypotheses regarding the interplay between genetic actions and cell heterogeneity to be tested. A simulation approach based on cell heterogeneity dynamics has been designed to test the statistical properties of the model. This model not only considers the traditional QTLs, but also indicates the methylated QTLs that can illustrate non-genetic individual differences. It has significant implications for probing the molecular, genetic and epigenetic mechanisms of hematopoietic progenitor cell heterogeneity.  相似文献   

8.
远交群体动态性状基因定位的似然分析Ⅰ.理论方法   总被引:3,自引:0,他引:3  
杨润清  高会江  孙华  Shizhong Xu 《遗传学报》2004,31(10):1116-1122
受动物遗传育种中用来估计动态性状育种值的随机回归测定日模型思想的启发 ,将关于时间 (测定日期 )的Legendre多项式镶嵌在遗传模型的每个遗传效应中 ,以刻画QTL对动态性状变化过程的作用 ,从而建立起动态性状基因定位的数学模型。利用远交设计群体 ,阐述了动态性状基因定位的似然分析原理 ,推导了定位参数似然估计的EM法两步求解过程。结合动态性状遗传分析的特点和普通数量性状基因定位研究进展 ,还提出了有关动态性状基因定位进一步研究的设想  相似文献   

9.
The interplay between dynamic models of biological systems and genomics is based on the assumption that genetic variation of the complex trait (i.e., outcome of model behavior) arises from component traits (i.e., model parameters) in lower hierarchical levels. In order to provide a proof of concept of this statement for a cattle growth model, we ask whether model parameters map genomic regions that harbor quantitative trait loci (QTLs) already described for the complex trait. We conducted a genome-wide association study (GWAS) with a Bayesian hierarchical LASSO method in two parameters of the Davis Growth Model, a system of three ordinary differential equations describing DNA accretion, protein synthesis and degradation, and fat synthesis. Phenotypic and genotypic data were available for 893 Nellore (Bos indicus) cattle. Computed values for parameter k1 (DNA accretion rate) ranged from 0.005 ± 0.003 and for α (constant for energy for maintenance requirement) 0.134 ± 0.024. The expected biological interpretation of the parameters is confirmed by QTLs mapped for k1 and α. QTLs within genomic regions mapped for k1 are expected to be correlated with the DNA pool: body size and weight. Single nucleotide polymorphisms (SNPs) which were significant for α mapped QTLs that had already been associated with residual feed intake, feed conversion ratio, average daily gain (ADG), body weight, and also dry matter intake. SNPs identified for k1 were able to additionally explain 2.2% of the phenotypic variability of the complex ADG, even when SNPs for k1 did not match the genomic regions associated with ADG. Although improvements are needed, our findings suggest that genomic analysis on component traits may help to uncover the genetic basis of more complex traits, particularly when lower biological hierarchies are mechanistically described by mathematical simulation models.  相似文献   

10.
L Min  R Yang  X Wang  B Wang 《Heredity》2011,106(1):124-133
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records.  相似文献   

11.
Understanding how an organism develops into a fully functioning adult from a mass of undifferentiated cells may reveal different strategies that allow the organism to survive under limiting conditions. Here, we review an analytical model for characterizing quantitative trait loci (QTLs) that underlie variation in growth trajectories and developmental timing. This model, called functional mapping, incorporates fundamental principles behind biological processes or networks that are bridged with mathematical functions into a statistical mapping framework. Functional mapping estimates parameters that determine the shape and function of a particular biological process, thus providing a flexible platform to test biologically meaningful hypotheses regarding the complex relationships between gene action and development.  相似文献   

12.
The development of any organism is a complex dynamic process that is controlled by a network of genes as well as by environmental factors. Traditional mapping approaches for analysing phenotypic data measured at a single time point are too simple to reveal the genetic control of developmental processes. A general statistical mapping framework, called functional mapping, has been proposed to characterize, in a single step, the quantitative trait loci (QTLs) or nucleotides (QTNs) that underlie a complex dynamic trait. Functional mapping estimates mathematical parameters that describe the developmental mechanisms of trait formation and expression for each QTL or QTN. The approach provides a useful quantitative and testable framework for assessing the interplay between gene actions or interactions and developmental changes.  相似文献   

13.
Mapping of quantitative trait loci based on growth models   总被引:10,自引:0,他引:10  
An approach called growth model-based mapping (GMM) of quantitative trait loci (QTLs) is proposed in this paper. The principle of the approach is to fit the growth curve of each individual or line with a theoretical or empirical growth model at first and then map QTLs based on the estimated growth parameters with the method of multiple-trait composite interval mapping. In comparison with previously proposed approaches of QTL mapping based on growth data, GMM has several advantages: (1) it can greatly reduce the amount of phenotypic data for QTL analysis and thus alleviate the burden of computation, particularly when permutation tests or simulation are performed to estimate significance thresholds; (2) it can efficiently analyze unbalanced phenotype data because both balanced and unbalanced data can be used for fitting growth models; and (3) it may potentially help us to better understand the genetic basis of quantitative trait development because the parameters in a theoretical growth model may often have clear biological meanings. A practical example of rice leaf-age development is presented to demonstrate the utility of GMM.  相似文献   

14.
Hou W  Li H  Zhang B  Huang M  Wu R 《Heredity》2008,101(4):321-328
Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.  相似文献   

15.
Zhao W  Li H  Hou W  Wu R 《Genetics》2007,176(3):1879-1892
The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive computational times required as well as from modeling the structure of a high-dimensional covariance matrix. In this article, we develop a statistical model for functional mapping of quantitative trait loci (QTL) that govern the developmental process of a quantitative trait on the basis of wavelet dimension reduction. By breaking an original signal down into a spectrum by taking its averages (smooth coefficients) and differences (detail coefficients), we used the discrete Haar wavelet shrinkage technique to transform an inherently high-dimensional biological problem into its tractable low-dimensional representation within the framework of functional mapping constructed by a Gaussian mixture model. Unlike conventional nonparametric modeling of wavelet shrinkage, we incorporate mathematical aspects of developmental trajectories into the smooth coefficients used for QTL mapping, thus preserving the biological relevance of functional mapping in formulating a number of hypothesis tests at the interplay between gene actions/interactions and developmental patterns for complex phenotypes. This wavelet-based parametric functional mapping has been statistically examined and compared with full-dimensional functional mapping through simulation studies. It holds great promise as a powerful statistical tool to unravel the genetic machinery of developmental trajectories with large-scale high-dimensional data.  相似文献   

16.
Growth trajectories are a biological process important to plant and animal breeding, and to evolutionary genetic studies. In this article, we report the detection of quantitative trait loci (QTLs) responsible for growth trajectories in poplars that are used as a model system for the study of forest biology. These QTLs were localized on a genetic linkage map of polymorphic markers using a statistical mapping method incorporating growth-curve models. The effects of the QTLs on growth are described as a function of age, so that age-specific changes in QTL effects can be readily projected throughout the entire growth process. The QTLs identified display increased effects on growth when trees age, yet the timing of QTL activation is earlier for stem height than diameter, which is consistent with the ecological viewpoint of canopy competition. The implications of the results for breeding and silviculture are discussed.  相似文献   

17.
Despite its critical importance to our understanding of plant growth and adaptation, the question of how environment‐induced plastic response is affected genetically remains elusive. Previous studies have shown that the reaction norm of an organism across environmental index obeys the allometrical scaling law of part‐whole relationships. The implementation of this phenomenon into functional mapping can characterize how quantitative trait loci (QTLs) modulate the phenotypic plasticity of complex traits to heterogeneous environments. Here, we assemble functional mapping and allometry theory through Lokta?Volterra ordinary differential equations (LVODE) into an R‐based computing platform, np2QTL, aimed to map and visualize phenotypic plasticity QTLs. Based on LVODE parameters, np2QTL constructs a bidirectional, signed and weighted network of QTL?QTL epistasis, whose emergent properties reflect the ecological mechanisms for genotype?environment interactions over any range of environmental change. The utility of np2QTL was validated by comprehending the genetic architecture of phenotypic plasticity via the reanalysis of published plant height data involving 3502 recombinant inbred lines of maize planted in multiple discrete environments. np2QTL also provides a tool for constructing a predictive model of phenotypic responses in extreme environments relative to the median environment.  相似文献   

18.
Cao J  Wang L  Xu J 《Biometrics》2011,67(4):1305-1313
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data.  相似文献   

19.
MOTIVATION: Functional mapping that embeds the developmental mechanisms of complex traits shows great power to study the dynamic pattern of genetic effects triggered by individual quantitative trait loci (QTLs). A full-sib family, produced by crossing two heterozygous parents, is characteristic of uncertainties about cross-type at a locus and linkage phase between different loci. Integrating functional mapping into a full-sib family requires a model selection procedure capable of addressing these uncertainties. 3FunMap, written in VC++ 6.0, provides a flexible and extensible platform to perform full-sib functional mapping of dynamic traits. Functions in the package encompass linkage phase determination, marker map construction and the pattern identification of QTL segregation, dynamic tests of QTL effects, permutation tests and numerical simulation. We demonstrate the features of 3FunMap through real data analysis and computer simulation. AVAILABILITY: http://statgen.psu.edu/software.  相似文献   

20.
This study describes the generation and test of a genetic resource suited to identify determinants of cell biological traits in plants. The use of quantitative trait loci (QTL) mapping for a better genetic understanding of cell biological traits is still at an early stage, even for biotechnologically important cell properties, such as the dimensions of fiber cells. A common strategy, the mapping of QTLs in recombinant inbred line (RIL) populations, is limited by the fact that the existing RIL populations exploit only a small fraction of the existing natural variation. Here, we report the mapping of QTLs impacting on the length of fiber cells in Arabidopsis inflorescence stems in a newly generated RIL population derived from a cross between the accessions Berkeley and the little known Lz-0. Through inbreeding of individual F2 plants, a total of 159 new F8 lines were produced and genotyped with a set of 49 single nucleotide polymorphism markers. The population was successfully used not only for the mapping of three QTLs controlling fiber length, but also to map five QTL controlling flowering time under short and long-day conditions. Our study demonstrates the usefulness of this new genetic resource by mapping in it QTLs underlying a poorly explored cellular trait as well as an already better explored regulatory pathway. The new RIL population and an online platform for the continuous supplementation of genetic markers will be generally available to substantially broaden the genetic diversity through which loci with impact on plant quantitative traits can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号