首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a discrete-time, age-structured population model to study the impact of Allee effects and harvesting. It is assumed that survival probabilities from one age class to the next are constants and fertility rate is a function of weighted total population size. Global extinction is certain if the maximal growth rate of the population is less than one. The model can have multiple attractors and the asymptotic dynamics of the population depend on its initial distribution if the maximal growth rate is larger than one. An Allee threshold depending on the components of the unstable interior equilibrium is derived when only the last age class can reproduce. The population becomes extinct if its initial population distribution is below the threshold. Harvesting on any particular age class can decrease the magnitude of the possible stable interior equilibrium and increase the magnitude of the unstable interior equilibrium simultaneously.  相似文献   

2.
Distribution patterns of metapopulation determined by Allee effects   总被引:4,自引:0,他引:4  
  相似文献   

3.
In this paper, we propose a general ratio-dependent prey-predator model with disease in predator subject to the strong Allee effect in prey. We obtain the complete dynamics of both models: (a) full model with Allee effect; (b) full model without Allee effect. Model (a) may have more than one interior equilibrium point, but model (b) has only one interior equilibrium point. Numerical results reveal that the coexistence of all the populations at the endemic state is possible for both the models. But for the model with Allee effect, the coexistence can be destroyed by an increased supply of alternative food for the predators. It can also be proved that for the full model with Allee effect, the disease can be suppressed under certain parametric conditions. Also by comparing models (a) and (b), we conclude that Allee effect can create or destroy the interior attractor. Finally, we have studied the disease free-submodel (prey and susceptible predator model) with and without Allee effect. The comparative study between these two submodels leads to the following conclusions: 1) In the presence of Allee effect, the number of interior equilibrium points can change from zero to two whereas the submodel without Allee effect has unique interior equilibrium point; 2) Both with and without Allee effect, initial conditions play an important role on the survival and extinction of prey as well as its corresponding predator; 3) In the presence of Allee effect, bi-stability occurs with stable or periodic coexistence of prey and susceptible predator and the extinction of prey and susceptible predator; 4) Allee effect can generate or destroy the interior equilibrium points.  相似文献   

4.
Allee effects in stochastic populations   总被引:3,自引:0,他引:3  
Brian Dennis 《Oikos》2002,96(3):389-401
The Allee effect, or inverse density dependence at low population sizes, could seriously impact preservation and management of biological populations. The mounting evidence for widespread Allee effects has lately inspired theoretical studies of how Allee effects alter population dynamics. However, the recent mathematical models of Allee effects have been missing another important force prevalent at low population sizes: stochasticity. In this paper, the combination of Allee effects and stochasticity is studied using diffusion processes, a type of general stochastic population model that accommodates both demographic and environmental stochastic fluctuations. Including an Allee effect in a conventional deterministic population model typically produces an unstable equilibrium at a low population size, a critical population level below which extinction is certain. In a stochastic version of such a model, the probability of reaching a lower size a before reaching an upper size b , when considered as a function of initial population size, has an inflection point at the underlying deterministic unstable equilibrium. The inflection point represents a threshold in the probabilistic prospects for the population and is independent of the type of stochastic fluctuations in the model. In particular, models containing demographic noise alone (absent Allee effects) do not display this threshold behavior, even though demographic noise is considered an "extinction vortex". The results in this paper provide a new understanding of the interplay of stochastic and deterministic forces in ecological populations.  相似文献   

5.
In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.  相似文献   

6.
Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.  相似文献   

7.
We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded.  相似文献   

8.
We describe the dynamics of an evolutionary model for a population subject to a strong Allee effect. The model assumes that the carrying capacity k(u), inherent growth rate r(u), and Allee threshold a(u) are functions of a mean phenotypic trait u subject to evolution. The model is a plane autonomous system that describes the coupled population and mean trait dynamics. We show bounded orbits equilibrate and that the Allee basin shrinks (and can even disappear) as a result of evolution. We also show that stable non-extinction equilibria occur at the local maxima of k(u) and that stable extinction equilibria occur at local minima of r(u). We give examples that illustrate these results and demonstrate other consequences of an Allee threshold in an evolutionary setting. These include the existence of multiple evolutionarily stable, non-extinction equilibria, and the possibility of evolving to a non-evolutionary stable strategy (ESS) trait from an initial trait near an ESS.  相似文献   

9.
With a series of mathematical models, we explore impacts of predation on a prey population structured into two age classes, juveniles and adults, assuming generalist, age-specific predators. Predation on any age class is either absent, or represented by types II or III functional responses, in various combinations. We look for Allee effects or more generally for multiple stable steady states in the prey population. One of our key findings is the occurrence of a predator pit (low-density ??refuge?? state of prey induced by predation; the chance of escaping predation thus increases both below and above an intermediate prey density) when only one age class is consumed and predators use a type II functional response ??this scenario is known to occur for an unstructured prey consumed via a type III functional response and can never occur for an unstructured prey consumed via a type II one. In the case where both age classes are consumed by type II generalist predators, an Allee effect occurs frequently, but some parameters give also rise to a predator pit and even three stable equilibria (one extinction equilibrium and two positive ones??Allee effect and predator pit combined). Multiple positive stable equilibria are common if one age class is consumed via a type II functional response and the other via a type III functional response??here, in addition to the behaviours mentioned above one may even observe three stable positive equilibria????double?? predator pit. Some of these results are discussed from the perspective of population management.  相似文献   

10.
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible-infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.  相似文献   

11.
If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the Allee effect matter at high densities? To answer this question, we use a susceptible–infected epidemic model to obtain model parameters that lead to host population persistence (with or without infected individuals) and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at large population densities. We show that a small perturbation to the disease-free equilibrium can eventually lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious disease effectively increase the Allee threshold of the host population demographics.  相似文献   

12.
We study an integral-differential equation that models a pure birth-jump process, where birth and dispersal cannot be decoupled. A case has been made that these processes are more suitable for phenomena such as plant dynamics, fire propagation, and cancer cell dynamics. We contrast the dynamics of this equation with those of the classical reaction-diffusion equation, where the reaction term models either logistic growth or a strong Allee effect. Recent evidence of an Allee effect has been found in plant dynamics during the germination process (due to seed predation) but not in the generation of seeds. This motivates where the Allee effect is included in our model. We prove the global existence and uniqueness of solutions with bounded initial data and analyze some properties of the solutions. Additionally, we prove results related to the persistence or extinction of a species, which are analogous to those of the classical reaction-diffusion equation. A key finding is that in some cases a population which is initially below the Allee threshold in some area, even if small, will actually survive. This is in contrast to solutions of the classical reaction-diffusion with the same initial data. Another difference of note is the lack of regularization and an infinite number of discontinuous equilibrium solutions to the birth-jump model.  相似文献   

13.
The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.  相似文献   

14.
Population growth can be positively or negatively dependent on density. Therefore, the distribution pattern of individuals in a patchy environment can greatly affect the growth of each subpopulation and thereby of the metapopulation. When population growth presents positive density‐dependence (Allee effect), the distribution pattern becomes crucial, as small populations have an increased extinction risk. The way in which individuals move between patches largely determines the distribution pattern and thereby the population dynamics. Collective movement, in particular, should be expected to increase the potential number of colonisers and therefore the probability of colonising success. Here, we use mathematical modelling (differential equations and stochastic simulations) to study how collective movement can influence metapopulation dynamics when Allee effects are at stake. The models are inspired by the two‐spotted spider mite, a phytophagous pest of recognised agricultural importance. This sub‐social mite displays trail laying/following behaviour that can provoke collective movement. Moreover, experimental evidence suggests that it is subject to Allee effects. In the first part of this study we present a single‐species population growth model incorporating Allee effects, and study its properties. In the second part, this growth model is integrated into a larger simulation model consisting of a set of interconnected patches, in which the individuals move from one patch to the other either independently or collectively. Our results show that collective movement is more advantageous than independent dispersal only when Allee effects are present and strong enough. Furthermore they provide a theoretical framework that allows the quantification of the interplay between Allee effects and collective movement.  相似文献   

15.
Allee effects, positive effects of population size or density on per-capita fitness, are of broad interest in ecology and conservation due to their importance to the persistence of small populations and to range boundary dynamics. A number of recent studies have highlighted the importance of spatiotemporal variation in Allee effects and the resulting impacts on population dynamics. These advances challenge conventional understanding of Allee effects by reframing them as a dynamic factor affecting populations instead of a static condition. First, we synthesize evidence for variation in Allee effects and highlight potential mechanisms. Second, we emphasize the “Allee slope,” i.e., the magnitude of the positive effect of density on the per-capita growth rate, as a metric for demographic Allee effects. The more commonly used quantitative metric, the Allee threshold, provides only a partial picture of the underlying forces acting on population growth despite its implications for population extinction. Third, we identify remaining unknowns and strategies for addressing them. Outstanding questions about variation in Allee effects fall broadly under three categories: (1) characterizing patterns of natural variability; (2) understanding mechanisms of variation; and (3) implications for populations, including applications to conservation and management. Future insights are best achieved through robust interactions between theory and empiricism, especially through mechanistic models. Understanding spatiotemporal variation in the demographic processes contributing to the dynamics of small populations is a critical step in the advancement of population ecology.  相似文献   

16.
In this paper, we investigate a spatially explicit metapopulation model with Allee effects. We refer to the patch occupancy model introduced by Levins (Bull Entomol Soc Am 15:237–240, 1969) as a spatially implicit metapopulation model, i.e., each local patch is either occupied or vacant and a vacant patch can be recolonized by a randomly chosen occupied patch from anywhere in the metapopulation. When we transform the model into a spatially explicit one by using a lattice model, the obtained model becomes theoretically equivalent to a “lattice logistic model” or a “basic contact process”. One of the most popular or standard metapopulation models with Allee effects, developed by Amarasekare (Am Nat 152:298–302, 1998), supposes that those effects are introduced formally by means of a logistic equation. However, it is easier to understand the ecological meaning of associating Allee effects with this model if we suppose that only the logistic colonization term directly suffers from Allee effects. The resulting model is also well defined, and therefore we can naturally examine it by Monte Carlo simulation and by doublet and triplet decoupling approximation. We then obtain the following specific features of one-dimensional lattice space: (1) the metapopulation as a whole does not have an Allee threshold for initial population size even when each local population follows the Allee effects; and (2) a metapopulation goes extinct when the extinction rate of a local population is lower than that in the spatially implicit model. The real ecological metapopulation lies between two extremes: completely mixing interactions between patches on the one hand and, on the other, nearest neighboring interactions with only two nearest neighbors. Thus, it is important to identify the metapopulation structure when we consider the problems of invasion species such as establishment or the speed of expansion.  相似文献   

17.
Many populations introduced into a novel environment fail to establish. One underlying process is the Allee effect, i.e., the difficulty of individuals to survive and reproduce when rare, and the consequently low or negative population growth. Although observations showing a positive relation between initial population size and establishment probability suggest that the Allee effect could be widespread in biological invasions, experimental tests are scarce. Here, we used a biological control program against Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) in the United States to manipulate initial population size of the introduced parasitoid Aphelinus asychis Walker (Hymenoptera: Aphelinidae) originating from France. For eight populations and three generations after introduction, we studied spatial distribution and spread, density, mate-finding, and population growth. Dispersal was lower in small populations during the first generation. Smaller initial population size nonetheless resulted in lower density during the three generations studied. The proportion of mated females and the population sex ratio were not affected by initial population size or population density. Net reproductive rate decreased with density within each generation, suggesting negative density-dependence. But for a given density, net reproductive rate was smaller in populations initiated with few individuals than in populations initiated with many individuals. Hence, our results demonstrate a demographic Allee effect. Mate-finding is excluded as an underlying mechanism, and other component Allee effects may have been overwhelmed by negative density-dependence in reproduction. Impact of generalist predators could provide one potential explanation for the relationship between initial population size and net reproductive rate. However, the continuing effect of initial population size on population growth suggests genetic processes may have been involved in the observed demographic Allee effect.  相似文献   

18.
Many models of mutualism have been proposed and studied individually. In this paper, we develop a general class of models of facultative mutualism that covers many of such published models. Using mild assumptions on the growth and self-limiting functions, we establish necessary and sufficient conditions on the boundedness of model solutions and prove the global stability of a unique coexistence equilibrium whenever it exists. These results allow for a greater flexibility in the way each mutualist species can be modelled and avoid the need to analyse any single model of mutualism in isolation. Our generalization also allows each of the mutualists to be subject to a weak Allee effect. Moreover, we find that if one of the interacting species is subject to a strong Allee effect, then the mutualism can overcome it and cause a unique coexistence equilibrium to be globally stable.  相似文献   

19.
Allee effects, or positive functional relationships between a population’s density (or size) and its per unit abundance growth rate, are now considered to be a widespread if not common influence on the growth of ecological populations. Here we analyze how stochasticity and Allee effects combine to impact population persistence. We compare the deterministic and stochastic properties of four models: a logistic model (without Allee effects), and three versions of the original model of Allee effects proposed by Vito Volterra representing a weak Allee effect, a strong Allee effect, and a strong Allee effect with immigration. We employ the diffusion process approach for modeling single-species populations, and we focus on the properties of stationary distributions and of the mean first passage times. We show that stochasticity amplifies the risks arising from Allee effects, mainly by prolonging the amount of time a population spends at low abundance levels. Even weak Allee effects become consequential when the ubiquitous stochastic forces affecting natural populations are accounted for in population models. Although current concepts of ecological resilience are bound up in the properties of deterministic basins of attraction, a complete understanding of alternative stable states in ecological systems must include stochasticity.  相似文献   

20.
王文婷  王万雄 《生态学报》2014,34(16):4596-4602
在Dubis动力系统的基础上,建立了具有Allee效应的捕食系统模型。对系统的稳定性进行了分析,受Allee效应的影响,食饵种群可能因为种群大小处于临界点以下而趋于灭绝。通过对系统进行模拟,结果表明:不受Allee效应的影响,系统的演化属于一种理想化的情形系统到达P(平衡)点的时间较不受Allee效应影响时系统到达P点的时间短,不利于生物的进化,而在Allee效应的影响下,系统的演化将达到一个平衡状态。由此,说明Allee效应为濒临灭绝物种的管理提供了重要的理论依据,对管理部门的决策有参考指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号