首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of spontaneous stationary vegetative patterns in an arid isotropic homogeneous environment is investigated by means of various weakly nonlinear stability analyses applied to the appropriate governing equation for this phenomenon. In particular, that process can be represented by a fourth-order partial differential time-evolution logistic equation for the total plant biomass per unit area divided by the carrying capacity of its territory and defined on an unbounded flat spatial domain. Those patterns that consist of parallel stripes, labyrinth-like mazes, rhombic arrays of rectangular patches, and hexagonal distributions of spots or gaps are generated by the balance between the effects of short-range facilitation and long-range competition. Then those theoretical predictions are compared with both relevant observational evidence and existing numerical simulations as well as placed in the context of the results from some recent nonlinear pattern formation studies.  相似文献   

2.
Current models of vegetation pattern formation rely on a system of weakly nonlinear reaction–diffusion equations that are coupled by their source terms. While these equations, which are used to describe a spatiotemporal planar evolution of biomass and soil water, qualitatively capture the emergence of various types of vegetation patterns in arid environments, they are phenomenological and have a limited predictive power. We ameliorate these limitations by deriving the vertically averaged Richards’ equation to describe flow (as opposed to “diffusion”) of water in partially saturated soils. This establishes conditions under which this nonlinear equation reduces to its weakly nonlinear reaction–diffusion counterpart used in the previous models, thus relating their unphysical parameters (e.g., diffusion coefficient) to the measurable soil properties (e.g., hydraulic conductivity) used to parameterize the Richards equation. Our model is valid for both flat and sloping landscapes and can handle arbitrary topography and boundary conditions. The result is a model that relates the environmental conditions (e.g., precipitation rate, runoff and soil properties) to formation of multiple patterns observed in nature (such as stripes, labyrinth and spots).  相似文献   

3.
The development of spontaneous stationary vegetative patterns in an arid flat environment is investigated by means of a weakly nonlinear diffusive instability analysis applied to the appropriate model system for this phenomenon. In particular, that process can be modeled by a partial differential interaction–diffusion equation system for the plant biomass density and the surface water content defined on an unbounded flat spatial domain. The main results of this analysis can be represented by closed-form plots in the rate of precipitation versus the specific rate of plant density loss parameter space. From these plots, regions corresponding to bare ground and vegetative patterns consisting of parallel stripes, labyrinth-like mazes, hexagonal arrays of gaps, irregular mosaics, and homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then those theoretical predictions are compared with both relevant observational evidence involving tiger and pearled bush patterns and existing numerical simulations of similar model systems as well as placed in the context of the results from some recent nonlinear vegetative pattern formation studies.  相似文献   

4.
L Hu  GW Wei 《Biophysical journal》2012,103(4):758-766
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects.  相似文献   

5.
It has recently been proven that the counterion condensate around an isolated line charge in an electrolyte, as characterized by nonlinear Poisson-Boltzmann theory, is an encapsulating δ-function. Here the identical result is shown to hold in the framework of the polyelectrolyte theory of Fuoss, Katchalsky, and Lifson. The proof fully exploits analytic solutions to the differential equation which are not available for the nonlinear, cylindrical Poisson-Boltzmann equation.  相似文献   

6.
 A variety of spatial patterns are formed chemotactically by the bacteria Escherichia coli and Salmonella typhimurium. We focus in this paper on patterns formed by E. coli and S. typhimurium in liquid medium experiments. The dynamics of the bacteria, nutrient and chemoattractant are modeled mathematically and give rise to a nonlinear partial differential equation system. We present a simple and intuitively revealing analysis of the patterns generated by our model. Patterns arise from disturbances to a spatially uniform solution state. A linear analysis gives rise to a second order ordinary differential equation for the amplitude of each mode present in the initial disturbance. An exact solution to this equation can be obtained, but a more intuitive understanding of the solutions can be obtained by considering the rate of growth of individual modes over small time intervals. Received: 10 March 1998 / Revised version: 7 June 1998  相似文献   

7.
Abstract

A new method for solving the full nonlinear Poisson-Boltzmann equation is outlined. This method is robust and efficient, and uses a combination of the multigrid and inexact Newton algorithms. The novelty of this approach lies in the appropriate combination of the two methods, neither of which by themselves are capable of solving the nonlinear problem accurately. Features of the Poisson-Boltzmann equation are fully exploited by each component of the hybrid algorithm to provide robustness and speed. The advantages inherent in this method increase with the size of the problem. The efficacy of the method is illustrated by calculations of the electrostatic potential around the enzyme Superoxide Dismutase. The CPU time required to solve the full nonlinear equation is less than half that needed for a conjugate gradient solution of the corresponding linearized Poisson-Boltzmann equation. The solutions reveal that the field around the active sites is significantly reduced as compared to that obtained by solving the corresponding linearized Poisson-Boltzmann equation. This new method for the nonlinear Poisson-Boltzmann equation will enable fast and accurate solutions of large protein electrostatics problems.  相似文献   

8.
Many micro-organisms use chemotaxis for aggregation, resulting in stable patterns. In this paper, the amoeba Dictyostelium discoideum serves as a model organism for understanding the conditions for aggregation and classification of resulting patterns. To accomplish this, a 1D nonlinear diffusion equation with chemotaxis that models amoeba behavior is analyzed. A classification of the steady state solutions is presented, and a Lyapunov functional is used to determine conditions for stability of inhomogenous solutions. Changing the chemical sensitivity, production rate of the chemical attractant, or domain length can cause the system to transition from having an asymptotic steady state, to having asymptotically stable single-step solution and multi-stepped stable plateau solutions.  相似文献   

9.
The electrostatic potential of B-DNA   总被引:10,自引:0,他引:10  
B Jayaram  K A Sharp  B Honig 《Biopolymers》1989,28(5):975-993
Electrostatic potentials around DNA are obtained by solving the nonlinear Poisson-Boltzmann (PB) equation. The detailed charge distribution of the DNA and the different polarizabilities of the macromolecule and solvent are included explicitly in the calculations. The PB equation is solved using extensions of a finite difference approach applied previously to proteins. Electrical potentials and ion concentrations are compared to those obtained with simpler models. It is found that the shape of the dielectric boundary between the macromolecule and solvent has significant effects on the calculated potentials near the surface, particularly in the grooves. Sequence-specific patterns are found, the most surprising result being the existence of positive regions of potential near the bases in both the major and minor grooves. The effect of solvent and ionic atmosphere screening of phosphate-phosphate repulsions is studied, and an effective dielectric function, appropriate for molecular mechanics simulations, is derived.  相似文献   

10.
V I Sbitnev 《Biofizika》1984,29(1):113-116
Stochastic oscillations imitating postsynaptic activity in the excitatory neurons are produced by a nonlinear difference equation which does not contain any sources of noise. The given back inhibition via inhibitory interneurons presents a negative feedback loop due to which oscillations in the model system are realized. By means of variation of parameters of the system the patterns of stochastic oscillations can be changed in wide range of physiologically meaningful patterns of the neuronal activity.  相似文献   

11.
A model of extended ventricular parasystole proposed by Moe et al. (1977) was formulated as a system of nonlinear difference equations by using the phase response curve of myocardial pacemakers. A number of ECG patterns of ventricular arrhythmia such as bigeminy, trigeminy etc. were explained from the property of periodic solutions of the equation. Characteristic properties of special kinds of arrhythmia called “concealed bigeminy” and “concealed trigeminy” were derived mathematically by assuming the model, in relation to the equation of the analog neuron model. The present study was considered to be of clinical significance as a theoretical foundation for the study of genesis of cardiac arrhythmias.  相似文献   

12.
Experiments on articular cartilage have shown nonlinear stress-strain curves under finite deformations as well as intrinsic viscous effects of the solid phase. The aim of this study was to propose a nonlinear biphasic viscohyperelastic model that combines the intrinsic viscous effects of the proteoglycan matrix with a nonlinear hyperelastic constitutive equation. The proposed equation satisfies objectivity and reduces for uniaxial loading to a solid type viscous model in which the actions of the springs are represented by the hyperelastic function proposed by Holmes and Mow [1990. J. Biomechanics 23, 1145-1156.]. Results of the model, that were efficiently implemented in an updated Lagrangian algorithm, were compared with experimental infinitesimal data reported by DiSilverstro and Suh [2001. J. Biomechanics 34, 519-525.] and showed acceptable fitting for the axial force (R(2)=0.991) and lateral displacement (R(2)=0.914) curves in unconfined compression as well as a good fitting of the axial indentation force curve (R(2)=0.982). In addition, the model showed an excellent fitting of finite-deformation confined compression stress relaxation data reported by Ateshian et al. [1997. J. Biomechanics 30, 1157-1164.] and Huang et al. [2005. J. Biomechanics 38, 799-809.] (R(2)=0.993 and R(2)=0.995, respectively). The constitutive equation may be used to represent the mechanical behavior of the proteoglycan matrix in a fiber reinforced model of articular cartilage.  相似文献   

13.
Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about magnetosonic speed. The jumps described by the generalized Korteweg-de Vries equation, which possesses similar nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps are considered. The assumption that our model possesses jumps of the same type as those for the generalized Korteweg-de Vries equation is justified by numerically investigating the problem of the decay of an initial discontinuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of such jumps in the general case.  相似文献   

14.
Morphologists have long been aware that differential size relationships of variables can be fo great value when studying shape. Allometric patterns have been the basis of many interpretations of adaptations, biomechanisms, and taxonomies. It is of importance that the parameters of the allometric equation be as accurate estimates as possible since they are so commonly used in such interpretations. Since the error term may come into the allometric relation either exponentially or additively, there are at least two methods of estimating the parameters of the allometric equation. That most commonly used assumes exponentiality of the error term, and operates by forming a linear function by a logarithmic transformation and then solving by the method of ordinary least squares. On the other hand, if the rrror term comes into the equation in an additive way, a nonlinear method may be used, searching the parameter space for those parameters which minimize the sum of squared residuals. Study of data on body weight and metabolism in birds explores the issues involved in discriminating between the two models by working through a specific example and shows that these two methods of estimation can yield highly different results. Not only minimizing the sum of squared residuals, but also the distribution and randomness of the residuals must be considered in determing which model more precisely estimates the parameters. In general there is no a priori way to tell which model will be best. Given the importance often attached to the parameter estimates, it may be well worth considerable effort to find which method of solution is appropriate for a given set of data.  相似文献   

15.
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.  相似文献   

16.
Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.  相似文献   

17.
The presence of one or more species at some spatial locations but not others is a central matter in ecology. This phenomenon is related to ecological pattern formation. Nonlocal interactions can be considered as one of the mechanisms causing such a phenomenon. We propose a single-species, continuous time metapopulation model taking nonlocal interactions into account. Discrete probability kernels are used to model these interactions in a patchy environment. A linear stability analysis of the model shows that solutions to this equation exhibit pattern formation if the dispersal rate of the species is sufficiently small and the discrete interaction kernel satisfies certain conditions. We numerically observe that traveling and stationary wave-type patterns arise near critical dispersal rate. We use weakly nonlinear analysis to better understand the behavior of formed patterns. We show that observed patterns arise through both supercritical and subcritical bifurcations from spatially homogeneous steady state. Moreover, we observe that as the dispersal rate decreases, amplitude of the patterns increases. For discontinuous transitions to instability, we also show that there exists a threshold for the amplitude of the initial condition, above which pattern formation is observed.  相似文献   

18.
本文在庞小峰改进后的Yomosa模型基础上,引进了激光与DNA分子系统作用的非线性方程。  相似文献   

19.
We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation.  相似文献   

20.
In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号