首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many mutants that disrupt zebrafish embryonic pigment pattern have been isolated, and subsequent cloning of the mutated genes causing these phenotypes has contributed to our understanding of pigment cell development. However, few mutants have been identified that specifically affect development of the adult pigment pattern. Through a mutant screen for adult pigment pattern phenotypes, we identified pyewacket (pye), a novel zebrafish mutant in which development of the adult caudal fin pigment pattern is aberrant. Specifically, pye mutants have fin melanocyte pigment pattern defects and fewer xanthophores than wild-type fins. We mapped pye to an interval where a single gene, the zebrafish ortholog of the human gene DHRSX, is present. pye will be an informative mutant for understanding how xanthophores and melanocytes interact to form the pigment pattern of the adult zebrafish fin.  相似文献   

2.
Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (a p /a p ) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.  相似文献   

3.
The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities.  相似文献   

4.
In embryos of the white mutant axolotl, prospective pigment cells are unable to migrate from the neural crest (NC) due to a deficiency in the subepidermal extracellular matrix (ECM). This raises the question of the molecular nature of this functional defect. Some PGs can inhibit cell migration on ECM molecules in vitro, and an excess of this class of molecules in the migratory pathways of neural crest cells might cause the restricted migration of prospective pigment cells seen in the white mutant embryo. In the present study, we use several monoclonal antibodies against epitopes on keratan sulphate (KS) and chondroitin sulphate (CS) and LM immunofluorescence to examine the distribution of these glycosaminoglycans at initial (stage 30) and advanced (stage 35) stages of neural crest cell migration. Most KS epitopes are more widely distributed in the white mutant than in the wild type embryo, whereas CS epitopes show very similar distributions in mutant and wild type embryos. This is confirmed quantitatively by immunoblotting: certain KS epitopes are more abundant in the white mutant. TEM immunogold staining reveals that KS as well as CS are present both in the basal lamina and in the interstitial ECM in both types of embryos. It remains to be investigated whether the abundance of certain KS epitopes in the white mutant embryo might contribute to the deficiency in supporting pigment cell migration shown by its ECM.  相似文献   

5.
The molecular mechanisms that regulate invertebrate visual pigment absorption are poorly understood. Studies of amphioxus Go-opsin have demonstrated that Glu-181 functions as the counterion in this pigment. This finding has led to the proposal that Glu-181 may function as the counterion in other invertebrate visual pigments as well. Here we describe a series of mutagenesis experiments to test this hypothesis and to also test whether other conserved acidic amino acids in Drosophila Rhodopsin 1 (Rh1) may serve as the counterion of this visual pigment. Of the 5 Glu and Asp residues replaced by Gln or Asn in our experiments, none of the mutant pigments shift the absorption of Rh1 by more than 6 nm. In combination with prior studies, these results suggest that the counterion in Drosophila Rh1 may not be located at Glu-181 as in amphioxus, or at Glu-113 as in bovine rhodopsin. Conversely, the extremely low steady state levels of the E194Q mutant pigment (bovine opsin site Glu-181), and the rhabdomere degeneration observed in flies expressing this mutant demonstrate that a negatively charged residueat this position is essential for normal rhodopsin function in vivo. This work also raises the possibility that another residue or physiologic anion may compensate for the missing counterion in the E194Q mutant.  相似文献   

6.
Pigmentation and Acriflavine Resistance in Serratia marcescens   总被引:1,自引:1,他引:1       下载免费PDF全文
Stable, orange, acriflavine-resistant variants were selected by treatment of a wild-type, red, acriflavine-sensitive strain of Serratia marcescens with acriflavine. Visible, ultraviolet, infrared, and nuclear magnetic resonance spectra of purified pigment from the red strain were identical to those of the pigment from the orange strain, and the orange mutant was not due to a mutation affecting the structure of the pigment, prodigiosin. The color of the red strain was not affected by variations in pH between 5.0 and 8.0, whereas the color of the orange mutant changed from pink to orange over the same pH range. This variation was mimicked by the pH-induced variation in color of prodigiosin purified from either the red, wild-type or the orange, mutant strains. Density-gradient centrifugation of cell fragments after ultrasonic disintegration resulted in characteristic pigmented bands. Biochemical characterization of these pigmented bands showed that they contained pigment and a protein component, but no lipids, polysaccharides, sugars, glucosamine, or phosphates were detected. Further fractionation of these pigmented bands by zone electrophoresis on a sucrose density gradient indicated that some pigment in S. marcescens was specifically attached to protein components.  相似文献   

7.
Kono M  Crouch RK  Oprian DD 《Biochemistry》2005,44(2):799-804
A triple mutant (F86L/T93P/S118T; bovine rhodopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformation that is metarhodopsin-II-like. The pigment is able to activate transducin in the dark, and the ligand-free apoprotein is also able to activate transducin constitutively. The pigment permits protons and chloride ions from solution access to the active site as it displays a pH- and NaCl-dependent absorption spectrum not observed with the wild-type pigment. However, the wild-type properties of light-dependent activity and a pH-independent absorption spectrum are recovered upon reconstitution of the triple mutant with 11-cis-9-demethyl retinal. These results suggest that binding the native chromophore cannot deactivate the protein because of steric interactions between the protein, possibly residue 118, and the 9-methyl group of the chromophore. Furthermore, the absorption spectrum of the 9-demethyl retinal regenerated pigment exhibits a band broader and with lower extinction at the absorption maximum than either the human blue or salamander UV wild-type pigments generated with the same retinal analogue. The broad spectrum appears to be comprised of two or more species and can be well-fit by a sum of scaled spectra of the two wild-type pigments. Binding the chromophore appears to trap the pigment in two or more conformations. The triple mutant reported here represents the first example of a dark-active cone pigment and constitutively active cone opsin.  相似文献   

8.
高产红曲黄色素菌株的选育   总被引:5,自引:0,他引:5  
利用紫外、硫酸二乙酯、氯化锂和亚硝基胍复合诱变的方法,选育到一株高产黄色素的红曲霉突变株MYM2.经过稳定性实验证明,诱变得到的菌株稳定性较好,液态发酵试验黄色素色价达到100U/mL以上,黄色素色调达到3.5左右.此黄色素在300nm~600nm波长之间只有一个在410 nm附近的最大吸收峰,在pH 3~8之间稳定性较好.当pH小于3时,红曲黄色素不稳定,黄色素溶液变混浊,放置后有沉淀产生.  相似文献   

9.
Regulation of gene expression is a fundamental process by which cells respond to both intracellular and extracellular signals. For a pigment cell, alterations in gene expression regulate the processes of cell migration, lineage restriction, differentiation, type of pigment produced, and progression from a normal pigment cell to that of melanoma. To date, the identification of genes involved in normal pigment cell development has been accomplished by the cloning of individual mutant alleles, a single gene at a time. Current advances in technology have now made it possible to use expression profile analysis to investigate, on a genomic scale, the process of pigment cell development and function. This review compares and contrasts the methods of subtractive suppressive polymerase chain reaction (PCR) and differential display with that of cDNA microarray analysis.  相似文献   

10.
The w-3(oe) silkworm mutant has white eyes and eggs due to the absence of ommochrome pigments in the eye pigment cells and serosa cells. The mutant is also characterized by translucent larval skin resulting from a deficiency in the transportation of uric acid, which acts as a white pigment in larval epidermal cells. A silkworm homolog of the fruitfly white gene, Bmwh3, a member of ATP-binding cassette transporter superfamily, was mapped on the w-3 locus. The w-3(oe) mutant has a single-base deletion in exon 2 and a premature stop codon at the 5' end of exon 3. These results show that w-3 is equivalent to Bmwh3 and is responsible for the transportation of ommochrome precursors and uric acid into pigment granules and urate granules, respectively.  相似文献   

11.
A hyperpigment-producing mutant, R-10847, was derived from Monascus kaoliang F-2 (ATCC 26264) through a series of mutagenesis steps. The mutant produced a large quantity of Monascus pigment when grown in mantou (steamed bread) by solid culture. The mutant produced pigments extracellularly by extruding the pigments outside the cell in a lump together with some viscous substances. The productivity of pigment was about 100-fold greater than that of the wild type. The mutant lost the capability of spore formation, the growth rate decreased, and both the size and quantity of conidia were reduced. The color of the pigment produced by the mutant changed from orange to deep red.  相似文献   

12.
Three pigment lines of the tomato cultivar ‘Pearson’ with isogenic backgrounds were studied to determine the relationship between certain carotenoids and the development of chromoplasts during fruit ripening. The lines were normal red (r+/r+), in which about 90% of the carotenoids in the ripe fruit is lycopene; high-beta (B/B) mutant, in which beta-carotene is the major pigment and the mature fruit color is deep orange ; and low-pigment (r/r) mutant, in which carotenoids are drastically reduced and the mature fruit is pale yellow-orange. This paper reports pigment analyses for the three lines and the ultrastructural changes in plastids of the two mutant lines. Very young, pale green fruits contain proplastids with limited lamellar structure. As the fruits reach the mature green stage, the plastids in all three lines develop into typical chloroplasts. Differences in pigment content and in ultrastructure among the lines are not apparent until ripening commences. In the low-pigment mutant carotenoids are reduced as ripening progresses and no carotenoid crystalloids are formed. As chlorophyll decreases the fruits become pale yellow. The grana become disorganized and the thylakoids appear to separate at the partitions and tend to be arrayed in lines, some still with their ends overlapping. Globules increase slightly in number. In the high-beta mutant the grana break down during ripening and globules increase greatly in size and number. Beta-carotene, presumed to be largely in the globules, crystallizes into elongated or druse type forms which may distort the globules. The crystals may affect the shape of the chromoplasts; long crystals may extend the length of the plastid to over 15 μ. Thylakoid plexes with a regular lattice structure sometimes occur in the chromoplasts of the high-beta mutant. Granules resembling aggregations of phytoferritin particles occur in the chromoplasts of both of these mutants.  相似文献   

13.
The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities.  相似文献   

14.
Porphyrin-Accumulating Mutants of Escherichia coli   总被引:17,自引:9,他引:8       下载免费PDF全文
Four mutants (pop-1, pop-6, pop-10, and pop-14) which accumulate a red water-insoluble pigment were obtained in Escherichia coli K-12 AB1621. For each mutant, the red pigment was shown to be protoporphyrin IX, a late precursor of heme. Mutagenic treatment of mutant pop-1 yielded a secondary mutant, pop-1 sec-20, which accumulated a brown water-soluble pigment. The brown pigment was shown to be coproporphyrin III. Mutant pop-1 resembled the parental strain in its cytochrome absorption spectrum, catalase activity, and ability to grow on nonfermentable carbon and energy sources; therefore, its ability to produce and utilize heme was unimpaired. Judged on the same criteria, the secondary mutant, pop-1 sec-20, was partially heme and respiratory deficient. Growth in anaerobic conditions decreased by 25% the accumulation of protoporphyrin by pop-1; under the same conditions, pop-1 sec-20 did not accumulate coproporphyrin or coproporphyrinogen. The mutations causing protoporphyrin accumulation in all four pop mutants were found to map in the lac to purE (10-13 min) region of the E. coli chromosome. In the case of mutant pop-1, the mutation was shown to be strongly linked to the tsx locus (12 min). In mutant pop-1 sec-20, the second mutation causing coproporphyrin accumulation was co-transducible with the gal locus at a frequency of 88 to 96%. The mechanism of porphyrin accumulation by the mutants is discussed.  相似文献   

15.
An ivo B mutant of Aspergillus nidulans, deficient in conidiophore pigment has been shown to accumulate N-acetyl-6-hydroxytryptophan. This substrate for a specific monophenol oxidase present in the wild type but absent in the mutant.  相似文献   

16.
The trp is a conditional phototransduction mutant of Drosophila. Direct electrical measurements and shot noise analysis suggest that a prolonged intense light causes in the mutant a reduction in the quantum efficiency for quantum bump production that does not arise from bleaching of the visual pigment. This effect depends on the duration of the light and only weakly on its intensity. In the normal fly, an intense blue light that shifts the visual pigment from rhodopsin to metarhodopsin, induces an excitatory process manifested by a prolonged depolarizing after potential (PDA). In the mutant, the PDA has a small amplitude and bump noise is superimposed on the response. It can thus be shown that the excitatory process underlying the PDA is also present in those trp mutants where the PDA voltage response is small or absent. It is suggested that the absence of the PDA voltage response in the mutant is probably due to a defect in an intermediate process, which links the excitatory process to the membrane conductance change.Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

17.
Re-nd, which was induced from the wild-type C108 by the chemical mutagen N-methane-N-methylnitrourea, is a nondiapause red-egg mutant of silkworm Bombyx mori. The special significance of the Re-nd mutant is that it is an independent dominant mutant. The aim of this study was to establish the type of pigment responsible for the red coloration in the Re-nd mutant eggs in silkworm. We compared the eggs of Re-nd mutants with those of the other B. mori egg color strains and confirmed that the Re-nd mutant is the only strain with red color and red pigment granules in nondiapause, showing this mutant belongs to the pigmentation in the serosa. We speculated that the red substance, which contributed to the bright red pigmentation for nondiapause eggs of the Re-nd mutant, could potentially be a novel pigment according to its solubility, optimum absorption peak, and oxidation–reduction reaction. Moreover, we have successfully constituted the system for enrichment, extraction, and purification of the red substance responsible for the Re-nd mutant, providing a new method for the separation and purification of other known and unknown pigments or substances.  相似文献   

18.
Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1) gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the α2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for the pattern change in the jaguar/obelix mutant.  相似文献   

19.
In larvae of the white axolotl mutant (Ambystoma mexicanum), contrary to normal dark ones, trunk pigmentation is restricted because the epidermis is unable to support subepidermal migration of pigment cells from the neural crest (NC). This study examines whether the subepidermal extracellular matrix (ECM) is the defective component which prevents pigment cell migration in the white embryo. We transplanted subepidermal ECM, adsorbed in vivo on membrane microcarriers, from and to white and dark embryos in various combinations. White embryos have demonstrated normal NC cell migration along the medioventral pathway, and in order to test the effects of medial ECM on subepidermal migration, this ECM was similarly transplanted. Carriers with ECM attached were inserted subepidermally in host embryos at a premigratory NC stage. Control carriers without ECM and carriers with subepidermal ECM from white donors did not affect NC cell migration in white or dark embryos. In contrast, subepidermal ECM from dark donors triggered NC cell migration in the subepidermal space of both white and dark hosts. Remarkably, subepidermal ECM from white donors which were older than those normally used also stimulated migration in embryos of both strains. Likewise, medial ECM from white donors elicited migration in white as well as dark hosts. Pigment cells occurred among those NC cells that were stimulated to migrate in response to contact with ECM on carriers. These results indicate that the subepidermal ECM of the white embryo is transiently defective as a substrate for pigment cell migration, implying that "maturation" of the ECM is retarded beyond the times during which pigment cells are able to respond. In contrast, the medial ECM of the white embryo appears to mature normally. These findings suggest that the effect of the d gene is expressed regionally through the subepidermal ECM during a limited period of development. Hence, the action of the d gene seems to retard ECM maturation, bringing it out of phase with the migratory capability of the pigment cells. We propose that such a shift in relative timing of the developmental phenomena involved inhibits pigment cell migration in embryos of the white axolotl mutant and, accordingly, that the restricted pigmentation of the mutant larva is generated through heterochrony.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号