首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci.  相似文献   

2.
3.
Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.  相似文献   

4.
The conjugative element pRS01 from Lactococcus lactis encodes the putative relaxase protein LtrB. The ltrB gene is interrupted by the functional group II intron Ll.ltrB. Accurate splicing of the two ltrB exons is required for synthesis of the mRNA encoding the LtrB conjugative relaxase and subsequent plasmid transfer. A conjugation-based genetic assay was developed to identify Ll.ltrB mutations that affect splicing. In this assay a nonsplicing, transfer-defective pRS01 derivative (pM1014) and a shuttle vector carrying the ltrB region, including the Ll.ltrB intron (pCOM9), are used. pCOM9 provides splicing-dependent complementation of the transfer defect of pM1014. Site-directed mutations within Ll.ltrB, either in the catalytic RNA or in the intron-encoded protein gene ltrA, were generated in the context of pCOM9. When these mutants were tested in the conjugation-based assay, significantly reduced mating was observed. Quantitative molecular analysis of in vivo splicing activity confirmed that the observed mating defects resulted from reduced splicing. Once the system was validated for the engineered mutants, random mutagenesis of the intron followed by genetic and molecular screening for splicing defects resulted in identification of point mutations that affect splicing.  相似文献   

5.
Group II introns are mobile genetic elements that can be redirected to invade specific genes. Here we describe the use of the lactococcal group II intron, Ll.ltrB, to achieve multicopy delivery of heterologous genes into the genome of Lactococcus lactis IL1403-UCD without the need for selectable markers. Ll.ltrB was retargeted to invade three transposase genes, the tra gene found in IS904 (tra904), tra981, and tra983, of which 9, 10, and 14 copies, respectively, were present in IL1403-UCD. Intron invasion of tra904, tra981, and tra983 allele groups occurred at high frequencies, and individual segregants possessed anywhere from one to nine copies of intron in the respective tra alleles. To achieve multicopy delivery of a heterologous gene, a green fluorescent protein (GFP) marker was cloned into the tra904-targeted Ll.ltrB, and the resultant intron (Ll.ltrB::GFP) was induced to invade the L. lactis tra904 alleles. Segregants possessing Ll.ltrB::GFP in three, four, five, six, seven, and eight copies in different tra904 alleles were obtained. In general, increasing the chromosomal copy number of Ll.ltrB::GFP resulted in strains expressing successively higher levels of GFP. However, strains possessing the same number of Ll.ltrB::GFP copies within different sets of tra904 alleles exhibited differential GFP expression, and segregants possessing seven or eight copies of Ll.ltrB::GFP grew poorly upon induction, suggesting that GFP expression from certain combinations of alleles was detrimental. The highest level of GFP expression was observed from a specific six-copy variant that produced GFP at a level analogous to that obtained with a multicopy plasmid. In addition, the high level of GFP expression was stable for over 120 generations. This work demonstrates that stable multicopy integration of heterologous genes can be readily achieved in bacterial genomes with group II intron delivery by targeting repeated elements.  相似文献   

6.
7.
The lactococcal group II intron Ll.ltrB interrupts the ltrB relaxase gene within a region that encodes a conserved functional domain. Nucleotides essential for the homing of Ll.ltrB into an intronless version of ltrB are found exclusively at positions required to encode amino acids broadly conserved in a family of relaxase proteins of gram-positive bacteria. Two of these relaxase genes, pcfG from the enterococcal plasmid pCF10 and the ORF4 gene in the streptococcal conjugative transposon Tn5252, were shown to support Ll.ltrB insertion into the conserved motif at precisely the site predicted by sequence homology with ltrB. Insertion occurred through a mechanism indistinguishable from retrohoming. Splicing and retention of conjugative function was demonstrated for pCF10 derivatives containing intron insertions. Ll.ltrB targeting of a conserved motif of a conjugative element suggests a mechanism for group II intron dispersal among bacteria. Additional support for this mechanism comes from sequence analysis of the insertion sites of the E.c.I4 family of bacterial group II introns.  相似文献   

8.
9.
10.
11.
12.
Group II introns are mobile genetic elements that can be redirected to invade specific genes. Here we describe the use of the lactococcal group II intron, Ll.ltrB, to achieve multicopy delivery of heterologous genes into the genome of Lactococcus lactis IL1403-UCD without the need for selectable markers. Ll.ltrB was retargeted to invade three transposase genes, the tra gene found in IS904 (tra904), tra981, and tra983, of which 9, 10, and 14 copies, respectively, were present in IL1403-UCD. Intron invasion of tra904, tra981, and tra983 allele groups occurred at high frequencies, and individual segregants possessed anywhere from one to nine copies of intron in the respective tra alleles. To achieve multicopy delivery of a heterologous gene, a green fluorescent protein (GFP) marker was cloned into the tra904-targeted Ll.ltrB, and the resultant intron (Ll.ltrB::GFP) was induced to invade the L. lactis tra904 alleles. Segregants possessing Ll.ltrB::GFP in three, four, five, six, seven, and eight copies in different tra904 alleles were obtained. In general, increasing the chromosomal copy number of Ll.ltrB::GFP resulted in strains expressing successively higher levels of GFP. However, strains possessing the same number of Ll.ltrB::GFP copies within different sets of tra904 alleles exhibited differential GFP expression, and segregants possessing seven or eight copies of Ll.ltrB::GFP grew poorly upon induction, suggesting that GFP expression from certain combinations of alleles was detrimental. The highest level of GFP expression was observed from a specific six-copy variant that produced GFP at a level analogous to that obtained with a multicopy plasmid. In addition, the high level of GFP expression was stable for over 120 generations. This work demonstrates that stable multicopy integration of heterologous genes can be readily achieved in bacterial genomes with group II intron delivery by targeting repeated elements.  相似文献   

13.
14.
15.
16.
17.
18.
Ll.ltrB is a functional group II intron located within a gene (ltrB) encoding a conjugative relaxase essential for transfer of the lactococcal element pRSO1. In this work, the Ll.ltrB intron was shown to be an independent mobile element capable of inserting into an intronless allele of the ltrB gene. Ll.ltrB was not observed to insert into a deletion derivative of the ltrB gene in which the intron splice site was removed. In contrast, a second vector containing a 271-nucleotide segment of ltrB spanning the Ll.ltrB splice site was shown to be a proficient recipient of intron insertion. Efficient homing was observed in the absence of a functional host homologous recombination system. This work demonstrates that the Ll.ltrB intron is a novel site-specific mobile element in lactococci and that group II intron self-transfer is a mechanism for intron dissemination among bacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号