首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to thyroid hormone (RTH) syndrome is associated with mutations in the human thyroid hormone receptor-beta (hTRbeta), many of which show marked reduction in hormone binding. Here, we investigated the structural consequences of two RTH mutants (A234T and R243Q), residing in the flexible N-terminal portion of the ligand binding domain (LBD), which exhibit modestly reduced hormone binding with impaired release of corepressor. X-ray crystallography analyses revealed that these two RTH mutants modulate the position of this flexible region by either altering the movement of helix 1 (A234T) or disrupting a salt bridge (R243Q). The subsequent increased flexibility and mobility in regions after the two sites of mutation coincided with a disorganized LBD. Consistent with this finding, the ability of these mutant N-terminal regions (234-260) to recruit the remaining LBD was decreased in a ligand-dependent helix assembly assay. Collectively, these data suggest that structural information imparted by the flexible segment in the N-terminal LBD is critical for overall stability of the LBD. Thus, these structural analyses provide mechanistic insight into the etiology of RTH disease in human TRbeta mutants that exhibit hormone binding with decreased ligand-dependent corepressor release.  相似文献   

2.
Mutations of the thyroid hormone receptor beta (TRbeta) gene cause resistance to thyroid hormone (RTH). RTH is characterized by increased serum thyroid hormone associated with nonsuppressible thyroid-stimulating hormone (TSH) and impaired growth. It is unclear how the actions of TRbeta mutants are modulated in vivo to affect the manifestation of RTH. Using a mouse model of RTH that harbors a knockin mutation of the TRbeta gene (TRbetaPV mouse), we investigated the effect of the steroid hormone receptor coactivator 3 (SRC-3) on RTH. In TRbetaPV mice deficient in SRC-3, dysfunction of the pituitary-thyroid axis and hypercholesterolemia was lessened, but growth impairment of RTH was worsened. The lessened dysfunction of the pituitary-thyroid axis was attributed to a significant decrease in growth of the thyroid and pituitary. Serum insulin-like growth factor 1 (IGF-1) was further reduced in TRbetaPV mice deficient in SRC-3. This effect led to reduced signaling of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway that is known to mediate cell growth and proliferation. Thus, SRC-3 modulates RTH by at least two mechanisms, one via its role as a receptor coregulator and the other via its growth regulatory role through the IGF-1/PI3K/AKT/mTOR signaling.  相似文献   

3.
Resistance to thyroid hormone (RTH) syndrome is an inherited inability to respond appropriately to T3 hormone. In generalized RTH, the T3 response of both the pituitary and periphery is disrupted. In pituitary (or central) RTH, the ability of the pituitary to sense (and down-regulate) elevated T3 is selectively impaired, whereas the periphery remains relatively T3 responsive, resulting in peripheral thyrotoxicity. Both forms of disease are linked to mutations in thyroid hormone receptor (TR)-beta. TRbeta is expressed by alternate mRNA splicing as two isoforms: TRbeta2, found primarily in the pituitary/hypothalamus, and TRbeta1, expressed broadly in many tissues. We report here that the wild-type TRbeta2 isoform displays an enhanced T3 response relative to the TRbeta1 isoform. Mutations associated with generalized RTH (P453S, G345S) impair both TRbeta2 and TRbeta1 function proportionally, whereas mutations associated with pituitary-specific RTH (R338L, R338W, R429Q) disproportionately disrupt TRbeta2 function. We propose that in the normal organism, and in generalized RTH, TRbeta2 in the pituitary can sense rising T3 levels in advance of TRbeta1 in the periphery, preventing thyrotoxicity. In contrast, the TRbeta mutations associated with pituitary RTH disproportionately disrupt the pituitary's ability to sense and suppress elevated T3 levels in advance of the periphery, producing symptoms of thyrotoxicity.  相似文献   

4.
5.
Lin HY  Hopkins R  Cao HJ  Tang HY  Alexander C  Davis FB  Davis PJ 《Steroids》2005,70(5-7):444-449
Because the androgen and estrogen nuclear hormone receptors are subject to acetylation, we speculated that the nuclear thyroid hormone receptor-beta1 (TRbeta1), another superfamily member, was also subject to this posttranslational modification. Treatment of 293T cells that contain TRbeta1(wt) with l-thyroxine (T4)(10(-7)M, total concentration) resulted in the accumulation of acetylated TR in nuclear fractions at 30-45 min and a decrease in signal by 60 min. A similar time course characterized recruitment by TR of p300, a coactivator protein with intrinsic transacetylase activity. Recruitment by the receptor of SRC-1, a TR coactivator that also acetylates nucleoproteins, was also demonstrated. Inhibition of the MAPK (ERK1/2) signal transduction cascade by PD 98059 blocked the acetylation of TR caused by T4. Tetraiodothyroacetic acid (tetrac) decreased T4-induced acetylation of TR. At 10(-7)M, 3,5,3'-triiodo-l-thyronine (T3) was comparably effective to T4 in causing acetylation of TR. We studied acetylation in TR that contained mutations in the DNA-binding domain (DBD) (residues 128-142) that are known to be relevant to recruitment of coactivators and to include the MAPK docking site. In response to T4 treatment, the K128A TR mutant transfected into CV-1 cells recruited p300, but not SRC-1, and was subject to acetylation. R132A complexed with SRC-1, but not p300; it was acetylated equally well in both the absence and presence of T4. S142E was acetylated in the absence and presence of T4 and bound SRC-1 under both conditions; this mutant was also capable of binding p300 in the presence of T4. There was no serine phosphorylation of TR in any of these mutants. We conclude that (1) TRbeta1, like AR and ER, is subject to acetylation; (2) the process of acetylation of TR requires thyroid hormone-directed MAPK activity, but not serine phosphorylation of TR by MAPK, suggesting that the contribution of MAPK is upstream in the activation of the acetylase; (3) the amino acid residue 128-142 region of the DBD of TR is important to thyroid hormone-associated recruitment of p300 and SRC-1; (4) acetylation of TR DBD mutants that is directed by T4 appears to be associated with recruitment of p300.  相似文献   

6.
Abnormal thyroid function is usually associated with altered cardiac function. Mutations in the thyroid hormone (TH)-binding region of the TH beta-receptor (TRbeta) that eliminate its TH-binding ability lead to the thyroid hormone resistance syndrome (RTH) in humans, which is characterized by high blood TH levels, goiter, hyperactivity, and tachycardia. Mice with "knock-in" mutations in the TH alpha-receptor (TRalpha) or TRbeta that remove their TH-binding ability have been developed, and those with the mutated TRbeta (TRbeta(PV/PV)) appear to provide a model for RTH. These two types of mutants show different effects on cerebral energy metabolism, e.g., negligible change in glucose utilization (CMR(Glc)) in TRbeta(PV/PV) mice and markedly reduced CMR(Glc), like that found in cretinous rats, in the mice (TRalpha(PV/+)) with the knock-in mutation of the TRalpha gene. Studies in knockout mice have indicated that the TRalpha may also influence heart rate. Because mutations in both receptor genes appear to affect some parameters of cardiac function and because cardiac functional activity and energy metabolism are linked, we measured heart glucose utilization (HMR(Glc)) in both the TRbeta(PV/PV) and TRalpha(PV/+) mutants. Compared with values in normal wild-type mice, HMR(Glc) was reduced (-77 to -95%) in TRalpha(PV/+) mutants and increased (87 to 340%) in TRbeta(PV/PV) mutants, the degree depending on the region of the heart. Thus the TRalpha(PV/+) and TRbeta(PV/PV) mutations lead, respectively, to opposite effects on energy metabolism in the heart that are consistent with the bradycardia seen in hypothyroidism and the tachycardia associated with hyperthyroidism and RTH.  相似文献   

7.
8.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

9.
10.
Resistance to thyroid hormones (RTH) is a syndrome characterized by a variable tissue hyposensitivity to thyroid hormones and is linked to mutations in the thyroid hormone receptor-beta (TRbeta) gene. We report here for the first time in vivo the mutation R429W (CCG-->TCG) located in the exon 10. The artificial mutant obtained in vitro displayed a normal T(3)-binding affinity and transactivation function. Therefore, it was thought to produce little, if any, clinical effect and to escape to clinical detection. The present report is at least in part discordant with this prediction since the propositus and his grandmother had an authentic hyperthyroidism with high FT(4) plasma level in the presence of inappropriate TSH. On the other hand, spontaneous variations of clinical features and - interestingly - of plasma FT(4) concentrations with time in the propositus, and the phenotype observed in his mother who never complained with thyrotoxic symptoms, confirmed the in vitro binding and functional predictions. The most intriguing is the clinical course of the grandmother as she first presented with predominant pituitary RTH and a diffuse goiter and finally with a toxic multinodular goiter with normal T(3) and T(4) plasma concentrations and suppressed TSH. In conclusion, we report a novel mutation in the gene encoding the thyroid hormone receptor responsible for predominant pituitary RTH already described in vitro but not in vivo. The fluctuant phenotype of the propositus suggests that other factors modulate the degree of tissue resistance that is under genetic control. Toxic multinodular goiter, possibly due to chronic TSH stimulation during RTH, in addition to the phenotype variability, increases the difficulty to diagnose this thyroid disorder.  相似文献   

11.
12.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Discrimination of DNA binding sites by mutant p53 proteins.   总被引:3,自引:1,他引:2       下载免费PDF全文
Critical determinants of DNA recognition by p53 have been identified by a molecular genetic approach. The wild-type human p53 fragment containing amino acids 71 to 330 (p53(71-330)) was used for in vitro DNA binding assays, and full-length human p53 was used for transactivation assays with Saccharomyces cerevisiae. First, we defined the DNA binding specificity of the wild-type p53 fragment by using systematically altered forms of a known consensus DNA site. This refinement indicates that p53 binds with high affinity to two repeats of PuGPuCA.TGPyCPy, a further refinement of an earlier defined consensus half site PuPuPuC(A/T).(T/A) GPyPyPy. These results were further confirmed by transactivation assays of yeast by using full-length human p53 and systematically altered DNA sites. Dimers of the pentamer AGGCA oriented either head-to-head or tail-to-tail bound efficiently, but transactivation was facilitated only through head-to-head dimers. To determine the origins of specificity in DNA binding by p53, we identified mutations that lead to altered specificities of DNA binding. Single-amino-acid substitutions were made at several positions within the DNA binding domain of p53, and this set of p53 point mutants were tested with DNA site variants for DNA binding. DNA binding analyses showed that the mutants Lys-120 to Asn, Cys-277 to Gln or Arg, and Arg-283 to Gln bind to sites with noncanonical base pair changes at positions 2, 3, and 1 in the pentamer (PuGPuCA), respectively. Thus, we implicate these residues in amino acid-base pair contacts. Interestingly, mutant Cys-277 to Gln bound a consensus site as two and four monomers, as opposed to the wild-type p53 fragment, which invariably binds this site as four monomers.  相似文献   

20.
Resistance to thyroid hormone (RTH), a human syndrome, is characterized by high thyroid hormone (TH) and thyroid-stimulating hormone (TSH) levels. Mice with mutations in the thyroid hormone receptor beta (TRβ) gene that cannot bind steroid receptor coactivator 1 (SRC-1) and Src-1−/− mice both have phenotypes similar to that of RTH. Conversely, mice expressing a mutant nuclear corepressor 1 (Ncor1) allele that cannot interact with TRβ, termed NCoRΔID, have low TH levels and normal TSH. We hypothesized that Src-1−/− mice have RTH due to unopposed corepressor action. To test this, we crossed NCoRΔID and Src-1−/− mice to create mice deficient for coregulator action in all cell types. Remarkably, NCoRΔID/ΔID Src-1−/− mice have normal TH and TSH levels and are triiodothryonine (T3) sensitive at the level of the pituitary. Although absence of SRC-1 prevented T3 activation of key hepatic gene targets, NCoRΔID/ΔID Src-1−/− mice reacquired hepatic T3 sensitivity. Using in vivo chromatin immunoprecipitation assays (ChIP) for the related coactivator SRC-2, we found enhanced SRC-2 recruitment to TR-binding regions of genes in NCoRΔID/ΔID Src-1−/− mice, suggesting that SRC-2 is responsible for T3 sensitivity in the absence of NCoR1 and SRC-1. Thus, T3 targets require a critical balance between NCoR1 and SRC-1. Furthermore, replacement of NCoR1 with NCoRΔID corrects RTH in Src-1−/− mice through increased SRC-2 recruitment to T3 target genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号