首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the physiological, anthropometric, and skill characteristics of rugby league players and determined the relationship between physical fitness and playing ability in these athletes. Eighty-six rugby league players (mean +/- SD age, 22.5 +/- 4.9 years) underwent measurements of standard anthropometry (height, body mass, and sum of 4 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and estimated maximal aerobic power (multistage fitness test). In addition, 2 expert coaches independently assessed the playing ability of players using standardized skill criteria. First-grade players had significantly greater (p < 0.05) basic passing and ball-carrying ability and superior skills under fatigue, tackling and defensive skills, and evasion skills (i.e., ability to beat a player and 2 verse 1 skills) than second-grade and third-grade players. While no significant (p > 0.05) differences were detected among playing levels for body mass; skinfold thickness; height; 10-, 20-, or 40-m speed; agility; vertical jump height; or estimated maximal aerobic power, all the physiological and anthropometric characteristics were significantly (p < 0.05) associated with at least 1 measure of playing ability. The results of this study demonstrate that selected skill characteristics but not physiological or anthropometric characteristics discriminate between successful and less successful rugby league players. However, all physiological and anthropometric characteristics were related to playing ability. These findings suggest that while physiological and anthropometric characteristics do not discriminate between successful and less successful rugby league players, a high level of physical fitness contributes to effective playing ability in these athletes. A game-specific training program that incorporates both physical conditioning and skills training may facilitate a greater transfer of physical fitness to competitive performances in rugby league.  相似文献   

2.
This study investigated the physiological and anthropometric characteristics of rugby league players during a competitive season. Sixty-eight rugby league players were allocated into training (n = 52) and nonexercise control (n = 16) groups. The training group participated in 2 field-training sessions per week, with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) in December (off-season), March (preseason), May (midseason), and August (end season). Increases in maximal aerobic power and muscular power and reductions in skinfold thickness were observed during the early phases of the season when training loads were highest. However, reductions in muscular power and maximal aerobic power and increases in skinfold thickness occurred toward the end of the season, when training loads were lowest and match loads and injury rates were highest. These findings suggest that high overall playing intensity and match loads in end-season matches increase in injury rates in the latter half of the season, and residual fatigue associated with limited recovery between successive matches may compromise the physical development of rugby league players.  相似文献   

3.
The purpose of this study was to investigate the physiological and anthropometric characteristics of junior volleyball players competing at the elite, semi-elite, and novice levels and to establish performance standards for these athletes. One hundred and fifty-three junior national (N = 14 males; N = 20 females), state (N = 16 males; N = 42 females), and novice (N = 27 males; N = 34 females) volleyball players participated in this study. Subjects underwent measurements of standard anthropometry (body mass, height, standing reach height, and sum of 7 skinfolds), lower-body muscular power (vertical jump and spike jump), upper-body muscular power (overhead medicine ball throw), speed (5-m and 10-m sprint), agility (T-test), and estimated maximal aerobic power (multistage fitness test) during the competitive phase of the season, after obtaining a degree of match fitness. Significant differences (p < 0.05) were detected among junior national, state, and novice volleyball players for height, standing reach height, skinfold thickness, lower-body muscular power, agility, and estimated maximal aerobic power, with the physiological and anthropometric characteristics of players typically improving with increases in playing level. Male players were taller, heavier, leaner, and had greater standing reach height, speed, agility, muscular power, and estimated maximal aerobic power than female players. These findings provide normative data and performance standards for junior volleyball players competing at the elite, semi-elite, and novice levels. Given the improvements in lower-body muscular power, agility, and estimated maximal aerobic power with increased playing level, and given the importance of these qualities to competitive performances, conditioning coaches should train these qualities to improve the playing performances of junior volleyball players.  相似文献   

4.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

5.
This study investigated the effects of skill-based conditioning games and traditional conditioning for improving speed, agility, muscular power, and maximal aerobic power in rugby league players. Sixty-nine subelite rugby league players performed either a skill-based conditioning games program (N = 32) or a traditional conditioning (i.e., running activities with no skill component) program (N = 37). Each player participated in a 9-week in-season training program, performed over 2 competitive seasons. Players performed 2 organized field-training sessions each week. Players underwent measurements of speed (10-m, 20-m, and 40-m sprint), muscular power (vertical jump), agility (L run), and maximal aerobic power (multi-stage fitness test) before and after the training period. Skill-based conditioning games induced a significant improvement (p < 0.05) in 10-m, 20-m, and 40-m speed, muscular power, and maximal aerobic power, whereas traditional conditioning activities improved 10-m speed and maximal aerobic power only. No significant differences (p > 0.05) were detected between the traditional conditioning and skill-based conditioning games groups for changes in 10-m speed, agility, and maximal aerobic power. Both groups won 6 of 8 matches played within the training period, resulting in a win-loss ratio of 75%. However, on average, the skill-based conditioning games group scored more points in attack (p < 0.05) and had a greater (p < 0.05) points differential than the traditional conditioning group. The results of this study demonstrate that skill-based conditioning games offer an effective method of in-season conditioning for rugby league players. In addition, given that skills learned from skill-based conditioning games are more likely to be applied in the competitive environment, their use may provide a practical alternative to traditional conditioning for improving the physiological capacities and playing performance of rugby league players.  相似文献   

6.
This study investigated training loads, injury rates, and physical performance changes associated with a field conditioning program in junior and senior rugby league players. Thirty-six junior (16.9 [95% confidence interval: 16.7-17.1] years) and 41 senior (25.5 [23.6- 27.3] years) rugby league players participated in a 14-week preseason training program that included 2 field training sessions each week. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) before and after training. Improvements in agility, muscular power, and maximal aerobic power were observed in both the junior and senior players following training; however, the improvement in maximal aerobic power and muscular power were greatest in the junior players. Training loads and injury rates were higher in the senior players. These findings demonstrate that junior and senior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in training age.  相似文献   

7.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

8.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

9.
This study investigated the influence of fatigue on tackling technique in rugby league players and determined the relationship between selected physiological capacities and fatigue-induced decrements in tackling technique. Eight rugby league players underwent a standardized one-on-one tackling drill in a 10-m grid. Players performed the one-on-one tackling drill before strenuous exercise and following game-specific repeated-effort exercise of progressively increasing intensities (corresponding to moderate, heavy, and very heavy intensity) in order to induce fatigue that was representative of match conditions. Video footage was taken from the rear, side, and front of the defending player. Tackling technique was objectively assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfold measurements), speed (10-, 20-, and 40-m sprint), muscular power (vertical jump), agility (L run), and estimated maximal aerobic power (VO2max multistage fitness test). A progressive increase in total repeated-effort time, heart rate, blood lactate concentration, and ratings of perceived exertion occurred throughout the repeated-effort protocol, demonstrating a progressive increase in intensity and fatigue. Fatigue resulted in progressive reductions in tackling technique. Players with the best tackling technique in a nonfatigued state demonstrated the greatest decrement in tackling technique under fatigued conditions. In addition, a significant association was observed between estimated VO2max (r = -0.62) and agility (r = 0.68) and fatigue-induced decrements in tackling technique. From a practical perspective, these findings suggest that strength and conditioning programs designed to develop endurance, change of direction speed, and anticipation skills may reduce fatigue-induced decrements in tackling technique. Furthermore, any defensive drills designed to improve tackling technique should be performed before and under fatigue.  相似文献   

10.
This study investigated the tackling ability of junior elite and subelite rugby league players, and determined the relationship between selected physiological and anthropometric characteristics and tackling ability in these athletes. Twenty-eight junior elite (mean ± SD age, 16.0 ± 0.2 years) and 13 junior subelite (mean ± SD age, 15.9 ± 0.6 years) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (stature, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Junior elite players had significantly greater (p < 0.05) tackling proficiency than junior subelite players (65.7 ± 12.5 vs. 54.3 ± 16.8%). Junior elite players tended to be taller, heavier, leaner, and have greater acceleration, change of direction speed, and muscular power, than the junior subelite players. The strongest individual correlates of tackling ability were acceleration (r = 0.60, p < 0.001) and lower body muscular power (r = 0.38, p < 0.05). When multiple linear regression analysis was performed to determine which of the physiological and anthropometric characteristics predicted tackling ability, fast acceleration was the only variable that contributed significantly (r2 = 0.24, p < 0.01) to the predictive model. These findings demonstrate that fast acceleration, and to a lesser extent, lower body muscular power contribute to effective tackling ability in junior rugby league players. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration and lower body muscular power qualities to improve tackling ability in junior rugby league players.  相似文献   

11.
This study investigated the tackling ability of high-performance rugby league players and determined the relationship between physiological and anthropometric qualities and tackling ability in these athletes. Twenty professional (National Rugby League) and 17 semiprofessional (Queensland Cup) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Professional players had significantly greater (p ≤ 0.05) tackling proficiency than semiprofessional players (87.5 ± 2.0 vs. 75.0 ± 2.3%). Professional players were significantly (p ≤ 0.05) older, more experienced, leaner, and had greater acceleration than semiprofessional players. The strongest individual correlates of tackling ability were age (r = 0.41, p ≤ 0.05), playing experience (r = 0.70, p ≤ 0.01), skinfold thickness (r = -0.59, p ≤ 0.01), acceleration (r = 0.41, p ≤ 0.05), and lower body muscular power (r = 0.38, p ≤ 0.05). When hierarchical multiple regression analysis was performed to determine which of the variables predicted tackling ability, playing experience and lower body muscular power were the only variables that contributed significantly (r2 = 0.60, p ≤ 0.01) to the predictive model. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration, lower body muscular power, and lean muscle mass to improve tackling ability in high-performance rugby league players.  相似文献   

12.
This study investigated the effect of a skill-based training program on measurements of skill and physical fitness in talent-identified volleyball players. Twenty-six talented junior volleyball players (mean +/- SE age, 15.5 +/- 0.2 years) participated in an 8-week skill-based training program that included 3 skill-based court sessions per week. Skills sessions were designed to develop passing, setting, serving, spiking, and blocking technique and accuracy as well as game tactics and positioning skills. Coaches used a combination of technical and instructional coaching, coupled with skill-based games to facilitate learning. Subjects performed measurements of skill (passing, setting, serving, and spiking technique and accuracy), standard anthropometry (height, standing-reach height, body mass, and sum of 7 skinfolds), lower-body muscular power (vertical jump, spike jump), upper-body muscular power (overhead medicine-ball throw), speed (5- and 10-m sprint), agility (T-test), and maximal aerobic power (multistage fitness test) before and after training. Training induced significant (p < 0.05) improvements in spiking, setting, and passing accuracy and spiking and passing technique. Compared with pretraining, there were significant (p < 0.05) improvements in 5- and 10-m speed and agility. There were no significant differences between pretraining and posttraining for body mass, skinfold thickness, lower-body muscular power, upper-body muscular power, and maximal aerobic power. These findings demonstrate that skill-based volleyball training improves spiking, setting, and passing accuracy and spiking and passing technique, but has little effect on the physiological and anthropometric characteristics of players.  相似文献   

13.
While studies have investigated speed and change of direction speed in rugby league players, no study has investigated the reactive agility of these athletes. In addition, the relationship among speed, change of direction speed, and reactive agility within the specific context of rugby league has not been determined. With this in mind, the purpose of this study was to investigate a wide range of speed, change of direction speed, and reactive agility tests commonly used by rugby league coaches to determine which, if any tests discriminated higher and lesser skilled players, and to investigate the relationship among speed, change of direction speed, and reactive agility in these athletes. Forty-two rugby league players completed tests of speed (5 m, 10 m, and 20 m sprint), change of direction speed ('L' run, 505 test, and modified 505 test), and reactive agility. The validity of the tests to discriminate higher and lesser skilled competitors was evaluated by testing first grade (N = 12) and second grade (N = 30) players. First grade players had faster speed, and movement and decision times on the reactive agility test than second grade players. No significant differences were detected between first and second grade players for change of direction speed. While movement times on the reactive agility test were significantly related to 10 m and 20 m sprint times and change of direction speed, no significant relationships were detected among measures of decision time and response accuracy during the reactive agility test and measures of linear speed and change of direction speed. These findings question the validity of preplanned change of direction speed tests for discriminating higher and lesser skilled rugby league players, while also highlighting the contribution of perceptual skill to agility in these athletes.  相似文献   

14.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

15.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

16.
This study investigated the specificity of skill-based conditioning games and compared the effectiveness of skill-based conditioning games and instructional training for improving physical fitness and skill in junior elite volleyball players. Twenty-five junior volleyball players (mean age +/- SE, 15.6 +/- 0.1 years) participated in this study. Heart rate data were collected on all players during the Australian Junior Volleyball Championships. After the competition, players were randomly allocated into a skill-based conditioning games group (n = 12) or an instructional training group (n = 13). Each player participated in a 12-week training program that included 3 organized court training sessions per week. No significant differences (P > 0.05) were detected between competition and skill-based conditioning games for the percentage of time spent in low-intensity, moderate-intensity, and high-intensity activities. Skill-based conditioning games induced improvements in vertical jump, spike jump, speed, agility, upper-body muscular power, and estimated maximal aerobic power, whereas technical instruction improved only spike jump and speed. Conversely, instructional training induced meaningful improvements in all measurements of skill, whereas improvements in technical skill after skill-based conditioning games were uncommon and typically small. The results of this study show that skill-based conditioning games offer a specific training stimulus to simulate the physiological demands of competition in junior elite volleyball players. Although the improvements in physical fitness after training were greater with skill-based conditioning games, instructional training resulted in greater improvements in technical skill in these athletes. These findings suggest that a combination of instructional training and skill-based conditioning games is likely to confer the greatest improvements in fitness and skill in junior elite volleyball players.  相似文献   

17.
The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.  相似文献   

18.
The aim of the study was to assess fitness profile of elite Croatian female taekwondo athletes and to determine which physical, physiological and motor characteristics differentiate mostly the successful from the less successful fighters. Thirteen national taekwondo champions were divided into two groups according to their senior international competitive achievements. Physiological characteristics, including maximal oxygen uptake (VO2max), were assessed during a continuous progressive treadmill test. The measured motor abilities included explosive and elastic leg strength, maximal strength, muscular endurance, anaerobic alactic power, agility and flexibility. Differences between the successful and less successful athletes were determined using independent t-test. Even though the differences were not statistically significant, the successful athletes had somewhat less fat (2.3%) and were taller by 5.8 cm. The successful athletes achieved significantly higher maximum running speed (15.8 +/- 0.5 versus 14.9 +/- 0. 7 km h(-1); p < 0.05), their ventilatory anaerobic threshold was significantly higher (41.4 +/- 4.1 versus 37.6 +/- 2.0 ml kg(-1) min(-1); p < 0.05) at a significantly lower heart rate (166.8 +/- 6.8 versus 171.0 +/- 8.2 beats min(-1); p < 0.05) than in the less successful athletes. Significant differences were also found in three tests of explosive power (p < 0.05), anaerobic alactic power (p < 0.01), and lateral agility (p < 0.05). The performance of taekwondo female athletes primarily depends on the anaerobic alactic power, explosive power expressed in the stretch-shortening cycle movements, agility and aerobic power.  相似文献   

19.
This study investigated the effects of video-based perceptual training on pattern recognition and pattern prediction ability in elite field sport athletes and determined whether enhanced perceptual skills influenced the physiological demands of game-based activities. Sixteen elite women soccer players (mean +/- SD age, 18.3 +/- 2.8 years) were allocated to either a video-based perceptual training group (N = 8) or a control group (N = 8). The video-based perceptual training group watched video footage of international women's soccer matches. Twelve training sessions, each 15 minutes in duration, were conducted during a 4-week period. Players performed assessments of speed (5-, 10-, and 20-m sprint), repeated-sprint ability (6 x 20-m sprints, with active recovery on a 15-second cycle), estimated maximal aerobic power (V O2 max, multistage fitness test), and a game-specific video-based perceptual test of pattern recognition and pattern prediction before and after the 4 weeks of video-based perceptual training. The on-field assessments included time-motion analysis completed on all players during a standardized 45-minute small-sided training game, and assessments of passing, shooting, and dribbling decision-making ability. No significant changes were detected in speed, repeated-sprint ability, or estimated V O2 max during the training period. However, video-based perceptual training improved decision accuracy and reduced the number of recall errors, indicating improved game awareness and decision-making ability. Importantly, the improvements in pattern recognition and prediction ability transferred to on-field improvements in passing, shooting, and dribbling decision-making skills. No differences were detected between groups for the time spent standing, walking, jogging, striding, and sprinting during the small-sided training game. These findings demonstrate that video-based perceptual training can be used effectively to enhance the decision-making ability of field sport athletes; however, it has no effect on the physiological demands of game-based activities.  相似文献   

20.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号