首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT(1) and VT(2)), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (Vo(2)peak = 64.5 +/- 5.2 ml.kg(-1).min(-1)) performed (a) a progressive cycle test to measure Vo(2)peak, peak power output (PPO), VT(1), and VT(2); (b) a time to exhaustion test (T(max)) at their Vo(2)peak power output (P(max)); and (c) a 40-km time-trial (TT(40)). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 x 60% T(max) at P(max), 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% T(max) at P(max), recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT(40) performance, Vo(2)peak, VT(1), VT(2), and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT(40) performance were modestly related to the changes in Vo(2)peak, VT(1), VT(2), and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT(40) performance were related to significant increases in Vo(2)peak, VT(1), VT(2), and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.  相似文献   

2.
In order to evaluate changes in parameters at the ventilatory threshold (VT) and in mechanical efficiency (ME) during training in the years 1982 and 1983 we tested seven top-class endurance runners on a treadmill. The VT and ME were assessed during their training period (January 1982 and 1983) and during their competitive period (March and July 1982). The maximal functional variables were almost constant during the training year, the maximal change in VO2max being about 5%. Similarly, VO2 at the VT was almost constant; the maximal change in VO2 at VT was also about 5%. Substantially greater changes, about 10%, were recorded in the velocity of running at the VT, at which the maximum was attained in July (18.9 +/- 0.8 km.h-1 or 5.25 +/- 0.22 m.s-1); this value was significantly higher than values assessed during the remaining tests. The greatest change, about 23%, during the training year was found in ME, for which the maximum was attained in July (35.7% +/- 2.1%). This was not significantly different from the value recorded in March (34.5% +/- 3.3%), but both values were significantly higher than those recorded during the training period. We can therefore conclude that in highly trained endurance runners the times needed to attain the optimal conditions for sports performance differ from the point of view of special speed training and from the point of view of mechanical-metabolic readiness.  相似文献   

3.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

4.
5.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

6.
Nine African and eight Caucasian 10-km runners resident at sea level volunteered. Maximal O2 consumption and peak treadmill velocity (PTV) were measured by using a progressive test, and fatigue resistance [time to fatigue (TTF)] was measured by using a newly developed high-intensity running test: 5 min at 72, 80, and 88% of individual PTV followed by 92% PTV to exhaustion. Skeletal muscle enzyme activities were determined in 12 runners and 12 sedentary control subjects. In a comparison of African and Caucasian runners, mean 10-km race time, maximal O2 consumption, and PTV were similar. In African runners, TTF was 21% longer (P < 0.01), plasma lactate accumulation after 5 min at 88% PTV was 38% lower (P < 0.05), and citrate synthase activity was 50% higher (27.9 +/- 7.5 vs. 18.6 +/- 2.1 micromol. g wet wt-1. min-1, P = 0.02). Africans accumulated lactate at a slower rate with increasing exercise intensity (P < 0.05). Among the entire group of runners, a higher citrate synthase activity was associated with a longer TTF (r = 0.70, P < 0.05), a lower plasma lactate accumulation (r = -0.73, P = 0.01), and a lower respiratory exchange ratio (r = -0.63, P < 0.05). We conclude that the African and Caucasian runners in the present study differed with respect to oxidative enzyme activity, rate of lactate accumulation, and their ability to sustain high-intensity endurance exercise.  相似文献   

7.
Acclimatization to moderate high altitude accompanied by training at low altitude (living high-training low) has been shown to improve sea level endurance performance in accomplished, but not elite, runners. Whether elite athletes, who may be closer to the maximal structural and functional adaptive capacity of the respiratory (i.e., oxygen transport from environment to mitochondria) system, may achieve similar performance gains is unclear. To answer this question, we studied 14 elite men and 8 elite women before and after 27 days of living at 2,500 m while performing high-intensity training at 1,250 m. The altitude sojourn began 1 wk after the USA Track and Field National Championships, when the athletes were close to their season's fitness peak. Sea level 3,000-m time trial performance was significantly improved by 1.1% (95% confidence limits 0.3-1.9%). One-third of the athletes achieved personal best times for the distance after the altitude training camp. The improvement in running performance was accompanied by a 3% improvement in maximal oxygen uptake (72.1 +/- 1.5 to 74.4 +/- 1.5 ml x kg(-1) x min(-1)). Circulating erythropoietin levels were near double initial sea level values 20 h after ascent (8.5 +/- 0.5 to 16.2 +/- 1.0 IU/ml). Soluble transferrin receptor levels were significantly elevated on the 19th day at altitude, confirming a stimulation of erythropoiesis (2.1 +/- 0.7 to 2.5 +/- 0.6 microg/ml). Hb concentration measured at sea level increased 1 g/dl over the course of the camp (13.3 +/- 0.2 to 14.3 +/- 0.2 g/dl). We conclude that 4 wk of acclimatization to moderate altitude, accompanied by high-intensity training at low altitude, improves sea level endurance performance even in elite runners. Both the mechanism and magnitude of the effect appear similar to that observed in less accomplished runners, even for athletes who may have achieved near maximal oxygen transport capacity for humans.  相似文献   

8.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

9.
It is well known that muscle strength and power are important factors in exercise. Plyometrics is designed to gain muscle strength and power in a shock method. The passive repetitive isokinetic (PRI) machine is developed for plyometrics. The present study aims to understand the effect of ten-week PRI training in different intensities on human plasma concentration cytokines as well as hormonal changes. Thirty young male subjects were enrolled into the ten-week PRI training program and were divided randomly into traditional, low- and high-intensity PRI training groups. Blood samples were obtained before, during, after and 1-, 2-, 3-, 5- and 7-day (D) post-training. The plasma concentrations of cytokines and hormones were measured by an enzyme-linked immunosorbent assay (ELISA). Elevated plasma IL-2 was found in the subjects in all the training programs. Significant increases of proinflammatory cytokines IL-1beta and TNF-alpha were observed at post 7 D in the high-intensity PRI training (29.5 +/- 4.4 and 515.8 +/- 127.1 pg/ml, respectively). No significance in differences in the plasma concentration of IL-6 was observed in the traditional and low-intensity PRI training. Significant elevation of IL-6 was found at post 5 D in high-intensity PRI training. Higher plasma IL-6 concentration was observed at post 3 and 5 D in high-intensity PRI training compared to low-intensity PRI training (P < 0.05). Significant elevation of plasma IL-15 during (week 6) and after (post 0 D) was observed in low-intensity PRI training. Also, there were differences between low-intensity PRI training and traditional training at post 0, 2, 3, and 5 D. The plasma concentration of cortisol was decreased to the lowest value (118.0 +/- 17.3 ng/ml) at post 0 D in traditional training, then returned to the baseline (220.5 +/- 19.1 ng/ml). In the high-intensity PRI training, but not in the low-intensity PRI training, the cortisol level dropped from 224.9 +/- 25.8 ng/ml at post 0 D down to the 123.2 +/- 22.6 ng/ml at post 1 D. Significant differences were found at post 1 and 5 D between low- and high-intensity PRI training, and post 0, 1, 2, and 3 D between traditional and high-intensity PRI training. Significant increased testosterone was found post 0, 1, 2, and 3 D in traditional training. Higher plasma testosterone was observed during and the recovery period in low-intensity, but not in high-intensity, PRI training. In conclusion, high-intensity PRI training could induce the proinflammatory cytokines, i.e., IL-1beta and TNF-alpha, and decrease plasma cortisol in the recovery period.  相似文献   

10.
Although East African black athletes dominate endurance running events, it is unknown whether black and white endurance runners with similar racing ability, matched for training, may differ in their skeletal muscle biochemical phenotype. Thirteen Xhosa (XR) and 13 Caucasian (CR) endurance runners were recruited and matched for 10-km performance, average preferred racing distance (PRD(A)), and training volume. Submaximal and maximal exercise tests were done, and vastus lateralis muscle biopsies were taken. XR were significantly lighter and shorter than CR athletes but had similar maximum oxygen consumption corrected for body weight and peak treadmill speed (PTS). XR had lower plasma lactate concentrations at 80% PTS (P < 0.05) compared with CR. Also, XR had more type IIA (42.4 +/- 9.2 vs. 31.3 +/- 11.5%, P < 0.05) and less type I fibers (47.8 +/- 10.9 vs. 63.1 +/- 13.2%, P < 0.05), although oxidative enzyme activities did not differ. Furthermore, XR compared with CR had higher lactate dehydrogenase (LDH) activity in homogenate muscle samples (383 +/- 99 vs. 229 +/- 85 mumol.min(-1).g dry weight(-1), P < 0.05) and in both type IIa (P < 0.05) and type I (P = 0.05) single-fiber pools. A marked difference (P < 0.05) in the composition of LDH isoform content was found between the two groups with XR having higher levels of LDH(5-4) isoforms (skeletal muscle isozymes; LDH-M) than CR, which was not accounted for by fiber-type differences alone. These results confirm differences in muscle phenotype and physiological characteristics, particularly associated with high-intensity running.  相似文献   

11.
The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners after a change from endurance to sprint training. Fifteen runners were assigned to either a sprint training (ST, n = 8) or a control (CON, n = 7) group. ST replaced their normal training by 30-s sprint runs three to four times a week, whereas CON continued the endurance training (approximately 45 km/wk). After the 4-wk sprint period, the expression of the muscle Na+-K+ pump alpha1-subunit and Na+/H+-exchanger isoform 1 was 29 and 30% higher (P < 0.05), respectively. Furthermore, plasma K+ concentration was reduced (P < 0.05) during repeated intense running. In ST, performance in a 30-s sprint test, Yo-Yo intermittent recovery test, and two supramaximal exhaustive runs was improved (P < 0.05) by 7, 19, 27, and 19%, respectively, after the sprint training period, whereas pulmonary maximum oxygen uptake and 10-k time were unchanged. No changes in CON were observed. The present data suggest a role of the Na+-K+ pump in the control of K+ homeostasis and in the development of fatigue during repeated high-intensity exercise. Furthermore, performance during intense exercise can be improved and endurance performance maintained even with a reduction in training volume if the intensity of training is very high.  相似文献   

12.
Endurance-trained athletes have increased heart rate variability (HRV), but it is not known whether exercise training improves the HRV and baroreflex sensitivity (BRS) in sedentary persons. We compared the effects of low- and high-intensity endurance training on resting heart rate, HRV, and BRS. The maximal oxygen uptake and endurance time increased significantly in the high-intensity group compared with the control group. Heart rate did not change significantly in the low-intensity group but decreased significantly in the high-intensity group (-6 beats/min, 95% confidence interval; -10 to -1 beats/min, exercise vs. control). No significant changes occurred in either the time or frequency domain measures of HRV or BRS in either of the exercise groups. Exercise training was not able to modify the cardiac vagal outflow in sedentary, middle-aged persons.  相似文献   

13.
With the advent of the ski-skating technique, upper body power has increasingly been shown to be a major factor in cross-country skiing success. The purpose of this study was to evaluate 4 commonly used training methods (weight, circuit, rollerboard, and ski-specific training) for the development of upper body power (UBP) in junior cross-country skiers. Fifty-eight adolescent cross-country skiers (Boys: n = 29, age = 16.0 +/- 1.2 y and Girls: n = 29, age = 15.5 +/- 1.5 y) were assigned to one of the UBP training methods for a 10-week training program. Fourteen cross-country runners served as controls (boys: n = 7, age = 15.8 +/- 1.7 y; girls: n = 7, age = 14.9 +/- 1.3 y). Skiers were evaluated pre- and post-training for upper body strength (UBS) using a 10 repetition maximum (RM) rollerboard test, for UBP using a double-poling ergometer and for upper body endurance (UBE) with a 3-km, arms-only, rollerski endurance time trial. Competitive race results were collected during the winters before and after training as were all training data. Only the rollerboard training group improved significantly greater than the control group (p < 0.05) in UBP and UBS. Improvements in UBP, UPS, and UBE were significantly related (r = 0.545, 0.303, and 0.407, respectively) to improvements in competitive performance. These data suggest that training using a rollerboard with 5-12RM and explosive speed is more effective in developing UBP than other common training methods for adolescent cross-country skiers. The practical importance of these data was verified by the significant relationships between improvements in UBP, UBS, and UBE related to improvements in competitive race performance.  相似文献   

14.
This investigation examined the relationship among plasma catecholamines, the blood lactate threshold (TLa), and the ventilatory threshold (TVE) in highly trained endurance athletes. Six competitive cyclists and six varsity cross-country runners performed a graded exercise test via two different modalities: treadmill running and bicycle ergometry. Although maximal oxygen consumption (VO2 max) did not differ significantly for the cyclists for treadmill running and cycling (64.6 +/- 1.0 and 63.5 +/- 0.4 ml O2.kg-1-min-1, respectively), both TLa and TVE occurred at a relatively earlier work load during the treadmill run. The opposite was true for the runners as TLa and TVE appeared at an earlier percent of VO2max during cycling compared with treadmill running (60.0 +/- 1.7 vs. 75.0 +/- 4.0%, respectively, TLa). The inflection in plasma epinephrine shifted in an identical manner and occurred simultaneously with that of TLa (r = 0.97) regardless of the testing protocol or training status. Although a high correlation (r = 0.86) existed for the shift in TVE and TLa, this relationship was not as strong as was seen with plasma epinephrine. The results suggest that a causal relationship existed between the inflection in plasma epinephrine and TLa during a graded exercise test. This association was not as strong for TVE and TLa.  相似文献   

15.
The aim of this study was to model the residual effects of training on the swimming performance and to compare a model that includes threshold saturation (MM) with the Banister model (BM). Seven Olympic swimmers were studied over a period of 4 +/- 2 years. For 3 training loads (low-intensity w(LIT), high-intensity w(HIT), and strength training w(ST)), 3 residual training effects were determined: short-term (STE) during the taper phase (i.e., 3 weeks before the performance [weeks 0, 1, and 2]), intermediate-term (ITE) during the intensity phase (weeks 3, 4, and 5), and long-term (LTE) during the volume phase (weeks 6, 7, and 8). ITE and LTE were positive for w(HIT) and w(LIT), respectively (p < 0.05). Low-intensity training load during taper was related to performances by a parabolic relationship (p < 0.05). Different quality measures indicated that MM compares favorably with BM. Identifying individual training thresholds may help individualize the distribution of training loads.  相似文献   

16.
beta-Adrenergic receptor density and responsiveness may be increased in experimental animals by physical conditioning, and the opposite effects have been observed after a single bout of exercise. To determine whether the chronic and acute effects of exercise include similar alterations in cardiovascular function in humans, we characterized heart rate, blood pressure, and distal lower extremity blood flow responses to graded-dose isoproterenol infusion in 15 young healthy subjects before and after exercise training and with and without a single preceding bout of prolonged exercise of either low or high intensity (61 +/- 1 or 82 +/- 1% maximal heart rate). VO2max was increased 18% after exercise training (43.2 +/- 2.7 to 51.1 +/- 3.3 ml.kg-1.min-1; P less than 0.001). Despite a concomitant fall in resting heart rate (59 +/- 3 to 50 +/- 2 beats/min; P less than 0.001), chronotropic and lower extremity blood flow responses to isoproterenol remained unchanged. Similarly, 1 h of acute high-intensity treadmill exercise altered baseline heart rate (58 +/- 4 to 74 +/- 5 beats/min; P less than 0.02), but neither low- nor high-intensity acute exercise influenced heart rate or lower extremity blood flow responses to isoproterenol. In contrast, the systolic pressure response to isoproterenol was blunted after high- but not low-intensity prolonged exercise (P less than 0.02). These data indicate that cardiac chronotropic (primarily beta 1) and vascular (beta 2) adrenergic agonist responses are not altered in humans by training or acute exercise. The systolic blood pressure response to beta-adrenergic stimulation is decreased by a single bout of high-intensity prolonged exercise by mechanisms that remain to be defined.  相似文献   

17.
We investigated the musculoskeletal adaptations and efficacy of a whole-body eccentric progressive resistance-training (PRT) protocol in young women. Subjects (n = 37; mean age, 24.3) were randomly assigned to one of 3 groups: high-intensity eccentric PRT (HRT), low-intensity eccentric PRT (LRT), or control. Subjects performed 3 sets of 6 repetitions at 125% intensity or 3 sets of 10 repetitions at 75% intensity in the HRT and LRT groups, respectively, 2 times per week for 16 weeks. Strength was determined by the concentric 1-repetition maximum (1RM) standard. Bone mass and body composition were measured by dual-energy x-ray absorptiometry (DXA). Blood and urine samples were obtained for deoxypyridinoline, osteocalcin, creatine kinase, and creatinine. Data were analyzed by repeated-measures analysis of variance with post hoc comparisons. Strength increased 20-40% in both training groups. Lean body mass increased in the LRT (0.7 +/- 0.6 kg) and HRT (0.9 +/- 0.9 kg) groups. Bone mineral content increased (0.855 +/- 0.958 g) in the LRT group only. Deoxypyridinoline decreased and osteocalcin increased in the HRT and LRT groups, respectively. These findings suggest that submaximal eccentric training is optimal for musculoskeletal adaptations and that the intensity of eccentric training influences the early patterns of bone adaptation.  相似文献   

18.
The purpose of this study was to evaluate the effects of continuous and interval training on changes in lactate and ventilatory thresholds during incremental exercise. Seventeen males were assigned to one of three training groups: group 1:55 min continuous exercise at approximately 50% maximum O2 consumption (VO2max); group 2: 35 min continuous exercise at approximately 70% VO2max; and group 3: 10 X 2-min intervals at approximately 105% VO2max interspersed with rest intervals of 2 min. All of the subjects were tested and trained on a cycle ergometer 3 day/wk for 8 wk. Lactate threshold (LT) and ventilatory threshold (VT) (in addition to maximal exercise measures) were determined using a standard incremental exercise test before and after 4 and 8 wk of training. VO2max increased significantly in all groups with no statistically significant differences between the groups. Increases (+/- SE) in LT (ml O2 X min-1) for group 1 (569 +/- 158), group 2 (584 +/- 125), and group 3 (533 +/- 88) were significant (P less than 0.05) and of the same magnitude. VT also increased significantly (P less than 0.05) in each group. However, the increase in VT (ml O2 X min-1) for group 3 (699 +/- 85) was significantly greater (P less than 0.05) than the increases in VT for group 1 (224 +/- 52) and group 2 (404 +/- 85). For group 1, the posttraining increase in LT was significantly greater than the increase in VT (P less than 0.05). We conclude that both continuous and interval training were equally effective in augmenting LT, but interval training was more effective in elevating VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号