首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the present study was to clarify the effect of static stretching on muscular performance during concentric isotonic (dynamic constant external resistance [DCER]) muscle actions under various loads. Concentric DCER leg extension power outputs were assessed in 12 healthy male subjects after 2 types of pretreatment. The pretreatments included (a) static stretching treatment performing 6 types of static stretching on leg extensors (4 sets of 30 seconds each with 20-second rest periods; total duration 20 minutes) and (b) nonstretching treatment by resting for 20 minutes in a sitting position. Loads during assessment of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The peak power output following the static stretching treatment was significantly (p < 0.05) lower than that following the nonstretching treatment under each load (5% MVC, 418.0 +/- 82.2 W vs. 466.2 +/- 89.5 W; 30% MVC, 506.4 +/- 82.8 W vs. 536.4 +/- 97.0 W; 60% MVC, 478.6 +/- 77.5 W vs. 523.8 +/- 97.8 W). The present study demonstrated that relatively extensive static stretching significantly reduces power output with concentric DCER muscle actions under various loads. Common power activities are carried out by DCER muscle actions under various loads. Therefore, the result of the present study suggests that relatively extensive static stretching decreases power performance.  相似文献   

2.
The objective of this study was to investigate the influence of active static stretching on the maximal isometric muscle strength (maximal voluntary contraction [MVC]) and rate of force development (RFD) determined within time intervals of 30, 50, 100, and 200 milliseconds relative to the onset of muscle contraction. Fifteen men (aged 21.3 ± 2.4 years) were submitted on different days to the following tests: (a) familiarization session to the isokinetic dynamometer; (b) 2 maximal isometric contractions for knee extensors in the isokinetic dynamometer to determine MVC and RFD (control); and (c) 2 active static stretching exercises for the dominant leg extensors (10 × 30 seconds for each exercise with a 20-second rest interval between bouts). After stretching, the isokinetic test was repeated (poststretching). Conditions 2 and 3 were performed in random order. The RFD was considered as the mean slope of the moment-time curve at time intervals of 0-30, 0-50, 0-100; 0-150; and 0200 milliseconds relative to the onset of muscle contraction. The MVC was reduced after stretching (285 ± 59 vs. 271 ± 56 N · m, p < 0.01). The RFD at intervals of 0-30, 0-50, and 0-100 milliseconds was unchanged after stretching (p > 0.05). However, the RFD measured at intervals of 0-150 and 0-200 milliseconds was significantly lower after stretching (p < 0.01). It can be concluded that explosive muscular actions of a very short duration (<100 milliseconds) seem less affected by active static stretching when compared with actions using maximal muscle strength.  相似文献   

3.
Although several studies have investigated the acute effect of static stretching exercises, the duration of exercises that negatively affects performance has not been ascertained. This study was conducted to determine the acute effect of different static stretching durations on quadriceps isometric and isokinetic peak torque production. The 50 participants were randomly allocated into five equivalent sized groups and were asked to perform a stretching exercise of different duration (no stretch, 10-second stretch, 20-second stretch, 30-second stretch, and 60-second stretch). The knee flexion range of motion and the isometric and concentric isokinetic peak torques of the quadriceps were measured before and after a static stretching exercise in the four experimental groups. The same parameters were examined in the control group (no stretch) without stretching, before and after a 5-minute passive rest. There were no significant differences among groups before the experimentation regarding their physical characteristics and performances (P > 0.05). These results reflect the different groups' homogeneity. Significant knee joint flexibility increases (P < 0.001) and significant isometric and isokinetic peak torque reductions (P < 0.05-0.001) have been shown to occur only after 30 and 60 seconds of quadriceps static stretching. Stretching reduced isometric peak torque by 8.5% and 16.0%, respectively. Concerning isokinetic peak torque after 30 and 60 seconds of stretching, it was reduced by 5.5% vs. 11.6% at 60 degrees/s and by 5.8% vs. 10.0% at 180 degrees/s. We suggest that torque decrements are related to changes of muscle neuromechanical properties. It is recommended that static stretching exercises of a muscle group for more than 30 seconds of duration be avoided before performances requiring maximal strength.  相似文献   

4.
Muscle strain is one of the most common injuries, resulting in a decreased range of motion (ROM) in this group of muscles. Systematic stretching over a period of time is needed to increase the ROM. The purpose of this study was to determine if whole-body vibration (WBV) training would have a positive effect on flexibility training (contract-release method) and thereby on the ROM of the hamstring musculature. In this study, 19 undergraduate students in physical education (12 women and 7 men, age 21.5 +/- 2.0 years) served as subjects and were randomly assigned to either a WBV group or a control group. Both groups stretched systematically 3 times per week for 4 weeks according to the contract-release method, which consists of a 5-second isometric contraction with each leg 3 times followed by 30 seconds of static stretching. Before each stretching exercise, the WBV group completed a WBV program consisting of standing in a squat position on the vibration platform with the knees bent 90 degrees on the Nemes Bosco system vibration platform (30 seconds at 28 Hz, 10-mm amplitude, 6 times per training session). The results show that both groups had a significant increase in hamstring flexibility. However, the WBV group showed a significantly larger increase (30%) in ROM than did the control group (14%). These results indicate that WBV training may have an extra positive effect on flexibility of the hamstrings when combined with the contract-release stretching method.  相似文献   

5.
This study compares the effects of 3 common stretching techniques on the length of the hamstring muscle group during a 4-week training program. Subjects were 19 young adults between the ages of 21 and 35. The criterion for subject inclusion was tight hamstrings as defined by a knee extension angle greater than 20 degrees while supine with the hip flexed 90 degrees . The participants were randomly assigned to 1 of 4 groups. Group 1 (n = 5) was self-stretching, group 2 (n = 5) was static stretching, group 3 (n = 5) was proprioceptive neuromuscular facilitation incorporating the theory of reciprocal inhibition (PNF-R), and group 4 (n = 4) was control. Each group received the same stretching dose of a single 30-second stretch 3 days per week for 4 weeks. Knee extension angle was measured before the start of the stretching program, at 2 weeks, and at 4 weeks. Statistical analysis (p < or = 0.05) revealed a significant interaction of stretching technique and duration of stretch. Post hoc analysis showed that all 3 stretching techniques increase hamstring length from the baseline value during a 4-week training program; however, only group 2 (static stretching) was found to be significantly greater than the control at 4 weeks. These data indicate that static stretching 1 repetition for 30 seconds 3 days per week increased hamstring length in young healthy subjects. These data also suggest that active self-stretching and PNF-R stretching 1 repetition for 30 seconds 3 days per week is not sufficient to significantly increase hamstring length in this population.  相似文献   

6.
The purpose of this study was to examine the effects of different modes of stretching within a pre-exercise warm-up on high-speed motor capacities important to soccer performance. Eighteen professional soccer players were tested for countermovement vertical jump, stationary 10-m sprint, flying 20-m sprint, and agility performance after different warm-ups consisting of static stretching, dynamic stretching, or no stretching. There was no significant difference among warm-ups for the vertical jump: mean +/- SD data were 40.4 +/- 4.9 cm (no stretch), 39.4 +/- 4.5 cm (static), and 40.2 +/- 4.5 cm (dynamic). The dynamic-stretch protocol produced significantly faster 10-m sprint times than did the no-stretch protocol: 1.83 +/- 0.08 seconds (no stretch), 1.85 +/- 0.08 seconds (static), and 1.87 +/- 0.09 seconds (dynamic). The dynamic- and static-stretch protocols produced significantly faster flying 20-m sprint times than did the no-stretch protocol: 2.41 +/- 0.13 seconds (no stretch), 2.37 +/- 0.12 seconds (static), and 2.37 +/- 0.13 seconds (dynamic). The dynamic-stretch protocol produced significantly faster agility performance than did both the no-stretch protocol and the static-stretch protocol: 5.20 +/- 0.16 seconds (no stretch), 5.22 +/- 0.18 seconds (static), and 5.14 +/- 0.17 seconds (dynamic). Static stretching does not appear to be detrimental to high-speed performance when included in a warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for subsequent high-speed performance.  相似文献   

7.
The purpose of the present study was to clarify the acute effect of dynamic stretching exercise on muscular performance during concentric dynamic constant external resistance (DCER, formally called isotonic) muscle actions under various loads. Concentric DCER leg extension power outputs were measured in 12 healthy male students after 2 types of pretreatment. The pretreatments were: (a) dynamic stretching treatment including 2 types of dynamic stretching exercises of leg extensors and the other 2 types of dynamic stretching exercises simulating the leg extension motion (2 sets of 15 times each with 30-second rest periods between sets; total duration: about 8 minutes), and (b) nonstretching treatment by resting for 8 minutes in a sitting position. Loads during measurement of the power output were set to 5, 30, and 60% of the maximum voluntary contractile (MVC) torque with isometric leg extension in each subject. The power output after the dynamic stretching treatment was significantly (p < 0.05) greater than that after the nonstretching treatment under each load (5% MVC: 468.4 +/- 102.6 W vs. 430.1 +/- 73.0 W; 30% MVC: 520.4 +/- 108.5 W vs. 491.0 +/- 93.0 W; 60% MVC: 487.1 +/- 100.6 W vs. 450.8 +/- 83.7 W). The present study demonstrated that dynamic stretching routines, such as dynamic stretching exercise of target muscle groups and dynamic stretching exercise simulating the actual motion pattern, significantly improve power output with concentric DCER muscle actions under various loads. These results suggested that dynamic stretching routines in warm-up protocols enhance power performance because common power activities are carried out by DCER muscle actions under various loads.  相似文献   

8.
The purpose of this study was to compare a 5-minute treadmill activity at 70% maximum heart rate (MHR) and 5 to 6 minutes of ballistic stretching to a 5-minute treadmill activity at 60% of MHR and 5 to 6 minutes of static stretching. Thirty healthy college students, 7 men and 23 women, volunteered. Most volunteers were moderately active. All participants signed an informed consent. Participants received the aforementioned warm-ups in random order with 48 to 72 hours between warm-ups. The stretching exercises were a back stretch, a quadriceps stretch, and a hamstring stretch. Three trials for 30 seconds each were given. After each warm-up the participants performed the modified-modified Schober test for low back flexibility, active knee extension test for hamstring flexibility, and plantar flexion for ankle flexibility. There were no significant differences on any of the 3 range of motion (ROM) tests although the ankle ROM test was almost significantly greater (68.8 degrees ) after the warm-up with static stretching compared with 65.9 degrees after the warm-up with ballistic stretching. A more intense cardiovascular activity and ballistic stretching were similar to a less intense cardiovascular activity and static stretching on flexibility. If athletes perform a warm-up and static or ballistic stretching before their workouts, then they should continue to perform the warm-up and the stretching routine with which they are most familiar and comfortable.  相似文献   

9.
We herein examined whether immediate muscular activity (active recovery) after stretching decreased stretch-induced strength deficits in human muscles. Our within-subject study included 8 subjects who were used as their own controls. For each subject, both legs were subjected to the same warm-up and stretching treatments, and then one leg was exposed to active recovery (experimental treatment) while the other was allowed to recover passively (control). Unilateral maximal voluntary contraction (MVC) of knee extensors was measured at baseline, poststretching, and postrecovery to monitor strength evolution. Our results revealed that the MVC strength at the baseline time point for control (590.8 +/- 104.2) and treated (602.2 +/- 112.7) legs decreased poststretching by 8.0 and 8.9%, respectively, and further decreased postrecovery by 1.3 and 1.2%, respectively. Maximal voluntary contraction strength tests demonstrated very good reliability, having intraclass coefficients of correlation ranging from 0.92-0.98. Mixed analysis of variance showed that the stretching program yielded significantly increased flexibility (p < 0.01) and significantly decreased MVC (p < 0.001) in both legs. The over-time variability between legs was marginal (1%), and no significant between-leg differences were observed. Indeed, the improvement in strength restoration due to active vs. passive recovery was -0.5 +/- 15 N, which was significantly lower (p < 0.01; 1-tailed t-test) than the amount of strength inhibition (32.6 N), estimated as 60% of the overall strength deficit (54.3 +/- 29.7 N). These results confirm that significant strength is lost poststretching but fail to show greater improvement in strength following active vs. passive recovery. Collectively, the present findings indicate that, contrary to the belief of many coaches, muscular exercises during the poststretching period are unlikely to minimize stretch-induced strength deficits.  相似文献   

10.
The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p < 0.05) and there was a smaller decrease after ballistic stretching (2.7%, p > 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.  相似文献   

11.
Preactivity stretching is commonly performed by athletes as part of their warm-up routine. However, the most recent literature questions the effectiveness of preactivity stretching. One limitation of this research is that the stretching duration is not realistic for most athletes. Therefore, the purpose of this study was to determine the effects of a practical duration of acute static and ballistic stretching on vertical jump (VJ), lower-extremity power, and quadriceps and hamstring torque. Twenty-four subjects performed a 5-minute warm-up followed by each of the following three conditions on separate days with order counterbalanced: static stretching, ballistic stretching, or no-stretch control condition. Vertical jump was determined with the Vertec VJ system and was also calculated from the ground-reaction forces collected from a Kistler force plate, which also were used to calculate power. Torque output of the quadriceps and hamstrings was measured through knee extension and flexion on the Biodex System 3 Dynamometer at 60 degrees x s(-1). Data normalized for body weight were analyzed using five separate, 3 (stretch condition) x 2 (gender) analysis-of-variance procedures with repeated measures on the factor of stretch condition. The gender x stretch interaction was not significant for any of the four measures, suggesting that the stretching conditions did not affect men and women differently. The results of this study reveal that static and ballistic stretching did not affect VJ, or torque output for the quadriceps and hamstrings. Despite no adverse effect on VJ, stretching did cause a decrease in lower-extremity power, which was surprising. Because of the mixed results, strength coaches would be better served to use dynamic stretching before activity; this has been consistently supported by the literature.  相似文献   

12.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

13.
Complex training is the method of coupling heavy and light loads into an organized sequence with the aim of facilitating postactivation potentiation. Anecdotal evidence has supported the use of complex training sequences, but scientific studies investigating the effects of sequencing isometric loads with dynamic muscle actions have been limited. The purpose of this study was to examine the effects of a preconditioning sequence of maximal isometric knee extensions on performance standards in selected dynamic whole-body exercise. Fourteen track and field athletes (23 +/- 5.7 years; 71.53 +/- 6.93 kg; 172.6 +/- 5.8 cm) were randomly assessed in selected whole-body exercises (drop and countermovement jumps, 5-second cycle sprint, knee extension) following a sequence of maximal voluntary isometric contractions (MVC; 3 repetitions of 3 seconds or 3 repetitions of 5 seconds) or in the absence of prior loading (control). Electromyographic (EMG) assessments of muscle activity were also made during the knee extension assessment. Significant (p < or = 0.05) increases in jump height (5.03%), maximal force (4.94%), and acceleration impulse (9.49%) were observed in the drop jump following 3 repetitions of 3-second MVC only. Knee extension maximal torque was also significantly increased (6.12%) following the 3-second MVC. No significant changes in countermovement jump or cycle sprint measures were observed for any of the experimental conditions. Though adaptations were found, changes in EMG activity were not significantly different for any of the experimental conditions. These data indicate that performing a sequence of repeated maximal isometric knee extensions (3 repetitions of 3 seconds) prior to selected dynamic exercise (< or =0.25 seconds) may have favorable effects on performance beyond standards achieved without prior heavy loading.  相似文献   

14.
Pre-exercise stretching has been widely reported to reduce performance in tasks requiring maximal or near-maximal force or torque. The purpose of this study was to compare the effects of 3 different pre-exercise stretching routines on running economy. Seven competitive male middle and long-distance runners (mean +/- SD) age: 32.5 +/- 7.7 years; height: 175.0 +/- 8.8 cm; mass: 67.8 +/- 8.6 kg; V(.-)O2max: 66.8 +/- 7.0 ml x kg(-1) x min(-1)) volunteered to participate in this study. Each participant completed 4 different pre-exercise conditions: (a) a control condition, (b) static stretching, (c) progressive static stretching, and (d) dynamic stretching. Each stretching routine consisted of 2 x 30-second stretches for each of 5 exercises. Dependent variables measured were sit and reach test before and after each pre-exercise routine, running economy (ml x kg(-1) x km(-1)), and steady-state oxygen uptake (ml x kg(-1) x min(-1)), which were measured during the final 3 minutes of a 10-minute run below lactate threshold. All 3 stretching routines resulted in an increase in the range of movement (p = 0.008). There was no change in either running economy (p = 0.915) or steady-state V(.-)O2 (p = 0.943). The lack of change in running economy was most likely because it was assessed after a period of submaximal running, which may have masked any effects from the stretching protocols. Previously reported reductions in performance have been attributed to reduced motor unit activation, presumably IIX. In this study, these motor units were likely not to have been recruited; this may explain the unimpaired performance. This study suggests that pre-exercise stretching has no impact upon running economy or submaximal exercise oxygen cost.  相似文献   

15.
The purpose of this study was to investigate whether 6 weeks of static hamstring stretching effects range of motion (ROM), sprint, and vertical jump performances in athletes. Twenty-one healthy division III women's track and field athletes participated in the study. Subjects were tested for bilateral knee ROM; 55-m sprint time; and vertical jump height before, at 3 weeks, and after the 6-week flexibility program. Subjects were randomly assigned to treatment and control groups and warmed up with a 10-minute jog on a track before a hamstring stretching protocol. The stretching protocol consisted of four repetitions held for 45 seconds, 4 days per week. Four variables (left and right leg ROM, 55-m sprint time, vertical jump) were analyzed using a repeated-measures analysis of variance design. No significant differences (P < or = 0.05) were found with any of the four variables between the stretching and control groups. Six weeks of a static hamstring stretching protocol did not improve knee ROM or sprint and vertical jump performances in women track and field athletes. The use of static stretching should be restricted to post practice or competition because of the detrimental effects reported throughout the literature. Based on the current investigation, it does not seem that chronic static stretching has a positive or negative impact on athletic performance. Thus, the efficacy of utilizing this practice is questionable and requires further investigation.  相似文献   

16.
The purpose of this study was to examine the acute effects of static stretching on peak torque (PT) and the joint angle at PT during maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors at 60 and 180 degrees x s(-1) for the stretched and unstretched limbs in women. Thirteen women (mean age +/- SD = 20.8 +/- 0.8 yr; weight +/- SD = 63.3 +/- 9.5 kg; height +/- SD = 165.9 +/- 7.9 cm) volunteered to perform separate maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors with the dominant and nondominant limbs on a Cybex 6000 dynamometer at 60 and 180 degrees x s(-1). PT (Nm) and the joint angle at PT (degrees) were recorded by the dynamometer software. Following the initial isokinetic assessments, the dominant leg extensors were stretched (mean stretching time +/- SD = 21.2 +/- 2.0 minutes) using 1 unassisted and 3 assisted static stretching exercises. After the stretching (4.3 +/- 1.4 minutes), the isokinetic assessments were repeated. The statistical analyses indicated no changes (p > 0.05) from pre- to poststretching for PT or the joint angle at PT. These results indicated that static stretching did not affect PT or the joint angle at PT of the leg extensors during maximal, voluntary, eccentric isokinetic muscle actions at 60 and 180 degrees x s(-1) in the stretched or unstretched limbs in women. In conjunction with previous studies, these findings suggested that static stretching may affect torque production during concentric, but not eccentric, muscle actions.  相似文献   

17.
The purposes of this study were to clarify the effects of static stretching for 30 seconds and dynamic stretching on leg extension power. Eleven healthy male students took part in this study. Each subject performed static stretching and dynamic stretching on the 5 muscle groups in the lower limbs and nonstretching on separate days. Leg extension power was measured before and after the static stretching, dynamic stretching, and nonstretching. No significant difference was found between leg extension power after static stretching (1788.5 +/- 85.7 W) and that after nonstretching (1784.8 +/- 108.4 W). On the other hand, leg extension power after dynamic stretching (2022.3 +/- 121.0 W) was significantly (p < 0.01) greater than that after nonstretching. These results suggest that static stretching for 30 seconds neither improves nor reduces muscular performance and that dynamic stretching enhances muscular performance.  相似文献   

18.
ABSTRACT: Amiri-Khorasani, M, MohammadKazemi, R, Sarafrazi, S, Riyahi-Malayeri, S, and Sotoodeh, V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. J Strength Cond Res 26(11): 3010-3017, 2012-The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.  相似文献   

19.
To investigate how the sweating response to a sustained handgrip exercise depends on changes in the exercise intensity, the sweating response to exercise was measured in eight healthy male subjects. Each subject lay in the supine position in a climatic chamber (35 degrees C and 50% relative humidity) for approximately 60 min. This exposure caused sudomotor activation by increasing skin temperature without a marked change in internal temperature. After this period, each subject performed isometric handgrip exercise [15, 30, 45, and 60% maximal voluntary contraction (MVC)] for 60 s. Although esophageal and mean skin temperatures did not change with a rise in exercise intensity and were similar at all exercise intensities, the sweating rate (SR) on the forearm increased significantly (P < 0.05) from baseline (0.094 +/- 0.021 mg. cm(-2). min(-1) at 30% MVC, 0.102 +/- 0.022 mg. cm(-2). min(-1) at 45% MVC, 0.059 +/- 0.009 mg. cm(-2). min(-1) at 60% MVC) in parallel with exercise intensity above exercise intensity at 30% MVC (0.121 +/- 0.023 mg. cm(-2). min(-1) at 30% MVC, 0.242 +/- 0.051 mg. cm(-2). min(-1) at 45% MVC, 0.290 +/- 0.056 mg. cm(-2). min(-1) at 60% MVC). Above 45% MVC, SR on the palm increased significantly from baseline (P < 0.05). Although SR on the forearm and palm tended to increase with a rise in exercise intensity, there was a difference in the time courses of SR between sites. SR on the palm showed a plateau after abrupt increase, whereas SR on the forearm increased progressively during exercise. These results suggest that the increase in SR with the increase in sustained handgrip exercise intensity is due to nonthermal factors and that the magnitude of these factors during the exercise may be responsible for the magnitude of SR.  相似文献   

20.
The purpose of this study was to determine whether the application of a moist heat pack (MHP) could increase hamstring flexibility. Both legs for each subject were used for this study. Each leg was randomly assigned to either an MHP leg or a control leg condition. Twenty-seven male subjects (height = 178.5 +/- 8.6 cm; weight = 84.4 +/- 18.7 kg; age = 21.9 +/- 6.3 years) volunteered for this study. For the MHP leg condition, baseline hamstring flexibility was measured using an active knee extension test. A 23-ga indwelling thermistor was inserted to a depth of 2.54 cm to measure hamstring temperature. After baseline temperature was recorded, 2 MHPs were placed on either side of the thermistor until temperature was increased by 0.4 degrees C. Hamstring flexibility postintervention measurements were performed at 0, 4, 8, and 16 minutes. The same protocol was used for the control leg, without the MHP application. A 2 x 5 repeated-measures analysis of variance revealed no significant interaction between the MHP and the control leg condition. These results support previous findings that MHP application does not significantly affect muscle flexibility. After application of an MHP, it takes 20-25 minutes to increase intramuscular temperatures by 0.4 degrees C. Both of these findings should be taken into consideration when using an MHP to increase muscle flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号