首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of obesity, insulin resistance, and type 2 diabetes in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, type 2 diabetes, and insulin resistance. Studies in adults show cardiovascular fitness to be more important than obesity in predicting insulin resistance. We recently demonstrated that a school-based fitness intervention in children who are overweight could improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. To determine whether new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by VO2max) in middle school children who were overweight. Thirty-five middle school children (mean age 12 +/- 0.4 years) who were overweight underwent testing on a power sensor-equipped Cycle Ops indoor cycle (Saris Cycling Group, Fitchburg, WI) as well as body composition by dual x-ray absorptiometry and VO2max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO2max testing, and power produced at 80%MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the indoor cycle at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight was 1.5 +/- 0.5. A significant correlation between watts and total body weight was seen for VO2max (P = 0.03), and significant negative correlation was seen between watts/total body weight and fasting insulin (P < 0.05). Among middle school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO2max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment, at substantially less cost and effort than laboratory-based measurements.  相似文献   

2.
Thirteen male volunteers performed cycle ergometer maximal oxygen uptake (VO2max tests) in moderate (21 degrees C, 30% rh) and hot (49 degrees C, 20% rh) environments, before and after a 9-day heat acclimation program. This program resulted in significantly decreased (P less than 0.01) final heart rate (24 bt X min-1) and rectal temperature (0.4 degrees C) from the first to last day of acclimation. The VO2max was lower (P less than 0.01) in the hot environment relative to the moderate environment both before (8%) and after (7%) acclimation with no significant difference (P greater than 0.05) shown for maximal power output (PO max, watts) between environments either before or after acclimation. The VO2max was higher (P less than 0.01) by 4% after acclimation in both environments. Also, PO max was higher (P less than 0.05) after acclimation in both the moderate (4%) and hot (2%) environments. The reduction in VO2max in the hot compared to moderate environment was not related to the difference in core temperature at VO2max between moderate and hot trials, nor was it strongly related with aerobic fitness level. These findings indicate that heat stress, per se, reduced the VO2max. Further, the reduction in VO2max due to heat was not affect be state of heat acclimation, the degree of elevation in core temperature, or level of aerobic fitness.  相似文献   

3.
The maximal rate of O? consumption (VO? max) constitutes one of the oldest fitness indexes established for the measure of cardiorespiratory fitness and aerobic performance. Procedures have been developed in which VO? max is estimated from physiological responses during submaximal exercise. Generally, VO? max is estimated using the classical renowned Astrand-Ryhming test. In young adults, poor fitness and low aerobic performance are often associated with a sedentary lifestyle, which is a well-described factor for the development of obesity and its related disorders such as cardiovascular diseases and type 2 diabetes. In the Indian Ocean, the inhabitants of La Reunion Island, a French overseas department, exhibit an increasing prevalence of obesity and type 2 diabetes. At the University of La Reunion, a new laboratory course involving students was designed to teach the indirect evaluation of their VO? max from the classical Astrand-Ryhming test and using a cycle ergometer as the exercise mode. Inverse and significant correlations were established between the students' fat mass percentages and their VO? max and between their waist-to-hip ratio and VO? max as well. Results from the international physical activity questionnaire showed that most participants in this laboratory were sedentary students. Therefore, this laboratory makes the students practice and understand the use of a classical test to estimate their VO? max. It also alerts them to the correlation between a sedentary lifestyle and higher body fat content. This exercise allowed students to use a scientific method to engage the problem of sedentary lifestyle, which is a real world issue.  相似文献   

4.
The purpose of this study was to examine the relative importance of physiological characteristics during firefighting performance, as assessed by the Candidate Physical Ability Test (CPAT). Subjects included career and volunteer firefighters aged 18-39 (N = 33). Upper- and lower-body strength, muscle endurance, lower body muscle power, body composition analysis, aerobic capacity, anaerobic fitness, and the heart rate (HR) and blood pressure response to stair climbing were assessed to determine the physiological characteristics of the subjects. To quantify firefighting performance, the CPAT was administered by members of the fire service. Absolute and relative mean power during the Wingate anaerobic cycling test (WAnT), relative peak power during the WAnT, and absolute maximal oxygen uptake (VO2max) were significantly higher in those who passed the CPAT (N = 18), compared to those who failed (N = 15; p < 0.01). Mean power during the WAnT, fatigue index during WAnT, absolute VO2max, upper body strength, grip strength, and the HR response to stair climbing were significantly related to CPAT performance time (p < 0.01). Absolute VO2max and anaerobic fatigue resistance during WAnT best predicted CPAT performance (Adj. R2 = 0.817; p < 0.001). Performance on the ceiling breach and pull was the only CPAT task that was not significantly related to the physiological characteristics assessed. Measures of anaerobic and cardiovascular fitness best predict overall CPAT performance, and individual task performance. Remedial programs aimed at improving firefighting performance should target anaerobic and aerobic fitness qualities.  相似文献   

5.
It has been demonstrated that leptin concentrations in obese patients may be altered by weight loss. We examined the effects of a 9-week aerobic exercise program on serum leptin concentrations in overweight women (20-50% above ideal body mass) under conditions of weight stability. Sixteen overweight women, mean (SE) age 42.75 (1.64) years, comprised the exercise group which adhered to a supervised aerobic exercise program. A graded exercise treadmill test was conducted before and after the exercise program to determine maximal oxygen uptake (VO2max) using open-circuit spirometry. The women demonstrated improved aerobic fitness (VO2max increased 12.29%), however, body fat and the body mass index did not change significantly [42.27 (1.35)-41.87 (1.33)%]. Fourteen women, age 40.57 (2.80) years, did not exercise over the same time period and served as a control group. Serum leptin levels were not significantly altered for either the exercise [28.00 (2.13)-31.04 (2.71) ng x ml(-1)] or the control group [33.24 (3.78)-34.69 (3.14) ng x mg(-1)]. The data indicate that 9 weeks of aerobic exercise improves aerobic fitness, but does not affect leptin concentrations in overweight women.  相似文献   

6.
We have previously shown that cardiorespiratory fitness predicts increasing fat mass during growth in white and African-American youth, but limited data are available examining this issue in Hispanic youth. Study participants were 160 (53% boys) overweight (BMI>or=85th percentile for age and gender) Hispanic children (mean+/-s.d. age at baseline=11.2+/-1.7 years). Cardiorespiratory fitness, assessed by VO2max, was measured through a maximal effort treadmill test at baseline. Body composition through dual-energy X-ray absorptiometry and Tanner stage through clinical exam were measured at baseline and annually thereafter for up to 4 years. Linear mixed models were used to examine the gender-specific relationship between VO2max and increases in adiposity (change in fat mass independent of change in lean tissue mass) over 4 years. The analysis was adjusted for changes in Tanner stage, age, and lean tissue mass. In boys, higher VO2max at baseline was inversely associated with the rate of increase in adiposity (beta=-0.001, P=0.03); this effect translates to a 15% higher VO2max at baseline resulting in a 1.38 kg lower fat mass gain over 4 years. However, VO2max was not significantly associated with changes in fat mass in girls (beta=0.0002, P=0.31). In overweight Hispanic boys, greater cardiorespiratory fitness at baseline was protective against increasing adiposity. In girls however initial cardiorespiratory fitness was not significantly associated with longitudinal changes in adiposity. These results suggest that cardiorespiratory fitness may be an important determinant of changes in adiposity in overweight Hispanic boys but not in girls.  相似文献   

7.
The purpose of this study was to determine if heart rate recovery (HRR) and heart rate variability (HRV) are related to maximal aerobic fitness and selected body composition measurements. Fifty men (age = 21.9 ± 3.0 years, height = 180.8 ± 7.2 cm, weight = 80.4 ± 9.1 kg, volunteered to participate in this study. For each subject, body mass index (BMI), waist circumference (WC), and the sum of skinfolds across the chest, abdomen, and thigh regions (SUMSF) were recorded. Heart rate variability (HRV) was assessed during a 5-minute period while the subjects rested in a supine position. The following frequency domain parameters of HRV were recorded: normalized high-frequency power (HFnu), and low-frequency to high-frequency power ratio (LF:HF). To determine maximal aerobic fitness (i.e., VO2max), each subject performed a maximal graded exercise test on a treadmill. Heart rate recovery was recorded 1 (HRR1) and 2 (HRR2) minutes during a cool-down period. Mean VO2max and BMI for all the subjects were 49.5 ± 7.5 ml·kg(-1)·min(-1) and 24.7 ± 2.2 kg·m(-2), respectively. Although VO2max, WC, and SUMSF was each significantly correlated to HRR and HRV, only SUMSF had a significant independent correlation to HRR1, HRR2, HFnu, LF:HF (p < 0.01). The results of the regression procedure showed that SUMSF accounted for the greatest variance in HRR1, HRR2, HFnu, and LF:HF (p < 0.01). The results of this study suggest that cardiovascular autonomic modulation is significantly related to maximal aerobic fitness and body composition. However, SUMSF appears to have the strongest independent relationship with HRR and HRV, compared to other body composition parameters and VO2max.  相似文献   

8.
There are conflicting reports in the literature which imply that the decrement in maximal aerobic power experienced by a sea-level (SL) resident sojourning at high altitude (HA) is either smaller or larger for the more aerobically "fit" person. In the present study, data collected during several investigations conducted at an altitude of 4300 m were analyzed to determine if the level of aerobic fitness influenced the decrement in maximal oxygen uptake (VO2max) at HA. The VO2max of 51 male SL residents was measured at an altitude of 50 m and again at 4300 m. The subjects' ages, heights, and weights (mean +/- SE) were 22 +/- 1 yr, 177 +/- 7 cm and 78 +/- 2 kg, respectively. The subjects' VO2max ranged from 36 to 60 ml X kg -1 X min -1 (mean +/- SE = 48 +/- 1) and the individual values were normally distributed within this range. Likewise, the decrement in VO2max at HA was normally distributed from 3 ml X kg-1 X min-1 (9% VO2max at SL) to 29 ml X kg-1 X min-1 (54% VO2max at SL), and averaged 13 +/- 1 ml X kg-1 X min-1 (27 +/- 1% VO2max at SL). The linear correlation coefficient between aerobic fitness and the magnitude of the decrement in VO2max at HA expressed in absolute terms was r = 0.56, or expressed as % VO2max at SL was r = 0.30; both were statistically significant (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Seeking to develop a simple ambulatory test of maximal aerobic power (VO(2 max)), we hypothesized that the ratio of inverse foot-ground contact time (1/t(c)) to heart rate (HR) during steady-speed running would accurately predict VO(2 max). Given the direct relationship between 1/t(c) and mass-specific O(2) uptake during running, the ratio 1/t(c). HR should reflect mass-specific O(2) pulse and, in turn, aerobic power. We divided 36 volunteers into matched experimental and validation groups. VO(2 max) was determined by a treadmill test to volitional fatigue. Ambulatory monitors on the shoe and chest recorded foot-ground contact time (t(c)) and steady-state HR, respectively, at a series of submaximal running speeds. In the experimental group, aerobic fitness index (1/t(c). HR) was nearly constant across running speed and correlated with VO(2 max) (r = 0.90). The regression equation derived from data from the experimental group predicted VO(2 max) from the 1/t(c). HR values in the validation group within 8.3% and 4.7 ml O(2) x kg(-1) x min(-1) (r = 0.84) of measured values. We conclude that simultaneous measurements of foot-ground constant times and heart rates during level running at a freely chosen constant speed can provide accurate estimates of maximal aerobic power.  相似文献   

10.
In two experiments maximal aerobic power (VO2max) calculated from maximal mechanical power (Wmax) was evaluated in 39 children aged 9-11 years. A maximal multi-stage cycle ergometer exercise test was used with an increase in work load every 3 min. In the first experiment oxygen consumption was measured in 18 children during each of the prescribed work loads and a correction factor was calculated to estimate VO2max using the equation VO2max = 12.Wmax + 5.weight. An appropriate increase in work rate based on height was determined for boys (0.16 W.cm-1) and girls (0.15 W.cm-1) respectively. In the second experiment 21 children performed a maximal cycle ergometer exercise test twice. In addition to the procedure in the first experiment a similar exercise test was performed, but without measurement of oxygen uptake. Calculated VO2max correlated significantly (p less than 0.01) with those values measured in both boys (r = 0.90) and girls (r = 0.95) respectively, and the standard error of estimation for VO2max (calculated) on VO2max (measured) was less than 3.2%. Two expressions of relative work load (%VO2max and %Wmax) were established and found to be closely correlated. The relative work load in %VO2max could be predicted from the relative work load in %Wmax with an average standard error of 3.8%. The data demonstrate that calculated VO2max based on a maximal multi-stage exercise test provides an accurate and valid estimate of VO2max.  相似文献   

11.
Objective: The purpose of this study was to examine the relationships among fatness and aerobic fitness on indices of insulin resistance and sensitivity in children. Research Design and Methods: A total of 375 children (193 girls and 182 boys) 7 to 9 years of age were categorized by weight as normal‐weight, overweight, or obese and by aerobic fitness based on a submaximal physical working capacity test (PWC). Fasting blood glucose (GLU) and insulin (INS) were used to calculate various indices of insulin sensitivity (GLU/INS), the homeostasis model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI). Surrogate measures of pancreatic β cell function included the insulinogenic index (INS/GLU) and the HOMA estimate of pancreatic β‐cell function (HOMA %B). Results: Insulin sensitivity and secretion variables were significantly different between the normal‐weight children and the overweight and obese subjects. Fasting insulin (FI), HOMA, QUICKI, and INS/GLU were significantly different between the overweight and obese subjects. Likewise, the high fitness group possessed a better insulin sensitivity profile. In general, the normal‐weight–high fit group possessed the best insulin sensitivity profile and the obese‐unfit group possessed the worst insulin sensitivity profile. Several significant differences existed among the six fat‐fit groups. Of particular note are the differences within BMI groups by fitness level and the comparison of values between the normal‐weight–unfit subjects and the overweight and obese subjects with high fitness. Conclusions: The results indicate that aerobic fitness attenuates the difference in insulin sensitivity within BMI categories, thus emphasizing the role of fitness even among overweight and obese children.  相似文献   

12.
The relationship between aerobic fitness as measured by maximal O2 uptake (VO2max) and the cardiovascular response to laboratory stressors was examined in two experiments. First, 34 male college students were screened on the basis of their heart rate (HR) response to a reaction time-shock avoidance (RT-AV) task. The six individuals showing an average HR increase of 45 beats/min (reactives) and the six subjects showing an average increase of 8 beats/min (nonreactives) did not differ in VO2max (47.7 +/- 2 vs. 48.7 +/- 1 ml.kg-1.min-1, respectively). However, a statistically significant association between a reported family history of hypertension and peak HR response to RT-AV was seen. In the second series of experiments, the plasma catecholamine and cardiovascular responses of eight elite endurance-trained athletes (VO2max 70.6 +/- 1 ml.kg-1.min-1) and eight untrained volunteers (VO2max 45.5 +/- 1 ml.kg-1.min-1) were compared on the following: RT-AV, reaction time for monetary reward (RT-AP), cold pressor, isometric handgrip, and orthostatic challenge (standing). The trained group exhibited a significantly lower mean HR at rest (P less than 0.05), otherwise there were no significant differences between the two groups. The results indicate that although individual differences (e.g., family history of hypertension and high resting HR) can be related to the potential for cardiovascular responses to novel laboratory challenges, the contribution of fitness to this characteristic is much less clear. Further exploration of questions pertaining to fitness and stress should focus on individuals with a predisposition to stress reactivity.  相似文献   

13.
Familial resemblance in maximal heart rate, blood lactate and aerobic power   总被引:1,自引:0,他引:1  
There are considerable interindividual differences in maximal oxygen uptake per kilogram of body weight (VO2 max/kg), maximal heart rate (max HR) and maximal blood lactate (max blood La) measured during a progressive exercise test. The aim of the study was to quantify the familial relationships for these variables. Parents and children of 38 families of French-Canadian descent were submitted to a modified Balke treadmill test. VO2 max/kg and max HR were the highest values reached during the test for 1 min. Max blood La was obtained from a blood sample taken 2 min after the test. The effects of age and sex were significant for max blood La and VO2 max/kg in each generation. Scores were thus adjusted through multiple regression procedures (age + sex + age X sex + age2), yielding residuals which were submitted to further analysis. Intraclass correlations (ri) were significant in pairs of sibs for max blood La and max HR, i.e. 0.28 (p less than 0.01) and 0.43 (p less than 0.05), respectively. For VO2 max/kg, pairs of spouses and sibs were about similarly correlated (ri = 0.20 and 0.15; p less than 0.05). Data suggested that children were more related to their mother than to their father for VO2 max/kg, VO2 max/kg of fat-free weight, and particularly for max HR. It was concluded that familial resemblance and heritability estimates for maximal aerobic power, max HR and max blood La were quite low and generally nonsignificant. Correlations between biological sibs were, however, consistently significant for max HR and max blood La. The suggestion of a maternal effect in maximal aerobic power should be further investigated.  相似文献   

14.
Physical activity and fitness play a significant role in prevention of overweight and obesity in children and adolescentes. Current understanding and evidence from epidemiologic studies provide useful insights to better understand how they relate to each other and how to develop future intervention strategies. This paper summarizes the most relevant information from cross-sectional and longitudinal studies on the relationships between physical activity, physical fitness, and overweight in early life. According to current scientific evidence: (i) High levels of physical activity during childhood and adolescence, particularly vigorous physical activity, are associated to lower total and central adiposity at this age and later in life; (ii) the level of physical fitness, especially aerobic fitness, is inversely related to current and future adiposity levels; (iii) overweight children and adolescents with a high fitness level have a healthier cardiovascular profile than their overweight, low fit peers and a similar profile to their normal weight, low fit peers. This suggests that high fitness levels may counteract the negative consequences attributed to body fat. These findings suggest that increasing physical fitness in overweight children and adolescentes may have many positive effects on health, including lower body fat levels.  相似文献   

15.

Aims and Objectives

To assess the prevalence of cardiovascular disease risk among urban public school students through a collaborative school district and university partnership.

Methods

Children and adolescents in grades K-12 from 24 urban public schools participated in measurements of height, weight, and other health metrics during the 2009–2010 school year. Body mass index (BMI) percentiles and z-scores were computed for 4673 students. President’s Challenge 1-mile endurance run was completed by 1075 students ages 9–19 years. Maximal oxygen consumption (⩒O2max) was predicted using an age-, sex-, and BMI-specific formula to determine health-related fitness. Resting blood pressure (BP) was assessed in 1467 students. Regression analyses were used to compare BMI z-scores, fitness, and age- and sex-specific BP percentiles across grade levels. Chi-square tests were used to explore the effect of sex and grade-level on health-related outcomes.

Results

Based on BMI, 19.8% were categorized as overweight and 24.4% were obese. Included in the obese category were 454 students (9.7% of sample) classified with severe obesity. Using FITNESSGRAM criteria, 50.2% of students did not achieve the Healthy Fitness Zone (HFZ); the proportion of students in the Needs Improvement categories increased from elementary to middle school to high school. Male students demonstrated higher fitness than female students, with 61.4% of boys and only 35.4% of girls meeting HFZ standards. Elevated BP was observed among 24% of 1467 students assessed. Systolic and diastolic BP z-scores revealed low correlation with BMI z-scores.

Conclusions

A community-university collaboration identified obesity, severe obesity, overweight, and low aerobic fitness to be common risk factors among urban public school students.  相似文献   

16.
Maximal oxygen uptake (VO2 max), generally accepted as a valid method for measuring state and change of aerobic fitness, was repeatedly measured in 93 males and 107 females 5 times over a period of 8 years. A direct measurement was made using a treadmill running test with constant speed (8 km/hr) and increasing slope. Oxygen uptake was analyzed continuously by an open-circuit technique. The reproducibility of VO2 max estimated from interperiod correlations resulted in high test-retest correlations of approximately 0.9 in both males and females. Inspection of the longitudinal data from the multiple-longitudinal design with four measurements in three cohorts did not reveal confounding effects, such as time of measurement effects, cohort effects, and drop-out effects. A comparison of the longitudinal data evaluated over four years with data from a comparable control group that was measured once during the four-year period also failed to show any testing effects. In 40% of the males and 50% of the females no leveling-off in VO2 max could be demonstrated; that is, there was an increase of more than 150 ml in the last stage of running. A comparison of subjects who showed leveling-off with those who showed no leveling-off supports the idea that in the age range 12-23 years leveling-off is not a prerequisite for reaching a true VO2 max. Repeated measurement of VO2 max, using a maximal running test on a treadmill appears to be a reliable method to describe the individual development of aerobic fitness in males and females in the age range 12-23 years.  相似文献   

17.
儿童最大有氧活动能力的发展特征   总被引:4,自引:1,他引:3  
本文报告了我国463名10-19岁儿童青少年的最大有氧活动能力的发展特征。在青春早期,男女童的最大吸氧量绝对值均随年龄增长而增加,男童由1.75升/分增至3.10升/分,女童由1.44升/分增至2.07升/分,女童增长较少;以后女童即稳定于这一水平,男童仍略有增长。按身高及按最大心率计标的相对值与其有相似的特征。按体重和瘦体重计算的相对值,在男女童都未见随年龄增长的规律。男童VO2max绝对值及各  相似文献   

18.
To examine the relationship between body weight in children and aerobic parameters of exercise, we determined the anaerobic threshold (AT), maximum O2 uptake (VO2max), work efficiency, and response time for O2 uptake (RT-VO2) in 109 healthy children (51 girls and 58 boys, range 6-17 yr old) using a cross-sectional study design. Gas exchange during exercise was measured breath by breath. The protocol consisted of cycle ergometry and a linearly increasing work rate (ramp) to the limit of the subject's tolerance. Both AT and VO2max increased systematically with body weight, whereas work efficiency and RT-VO2 were virtually independent of body size. The ratio of AT to VO2max decreased slightly with age, and its mean value was 60%. AT scaled to body weight to the power of 0.92, not significantly different from the power of 1.01 for VO2max. Thus both the AT and the VO2max increase in a highly ordered manner with increasing size, and as judged by AT/VO2max, the onset of anaerobic metabolism during exercise occurred at a relatively constant proportion of the overall limit of the gas transport system. We conclude that in children cardiorespiratory responses to exercise are regulated at optimized values despite overall change in body size during growth.  相似文献   

19.
The effect of high altitude (HA) on O2 debt and blood lactate concentration [( L]) was examined in 10- to 13-yr-old children who exhibited the same level of physical fitness. Fifty-one children acclimatized to HA (3,700 m) were compared with 40 children living at low altitude (LA, 330 m) during submaximal (20-95% maximal aerobic power, MAP), maximal and supramaximal (115% MAP) bicycle exercise. Results showed that 1) maximal O2 uptake (VO2max) and maximal heart rate were significantly (P less than 0.001) lower at HA than at LA by 15% and 11 beats X min-1, respectively; 2) for a given absolute work load, O2 debt was higher at HA than at LA, and the slopes of the linear relationships between O2 debt and O2 uptake were significantly higher at HA; 3) when related to percent of VO2max, O2 debts in HA and LA were similar; for 115% MAP maximal O2 debt and [L] were not significantly different (maximal O2 debt, 45.7 +/- 2.7 and 45.9 +/- 3.8 ml X kg-1; [L], 6.0 +/- 0.3 and 6.7 +/- 0.5 mM); and 4) linear relationships between maximal O2 debt and [L] were the same at HA and LA. This suggests that HA did not modify the anaerobic capacity in children.  相似文献   

20.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号